
IBM Parallel Environment for AIX 5L

Operation and Use, Volume 2

Tools Reference

Version 4 Release 3.0

SA22-7949-05

���

IBM Parallel Environment for AIX 5L

Operation and Use, Volume 2

Tools Reference

Version 4 Release 3.0

SA22-7949-05

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 195.

Sixth Edition (October 2006)

This edition applies to Version 4, Release 3, Modification 0 of IBM Parallel Environment for AIX 5L (product number

5765-F83) and to all subsequent releases and modifications until otherwise indicated in new editions. This edition

replaces SA22-7949-04. Significant changes or additions to the text and illustrations are indicated by a vertical line (|

) to the left of the change.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you

may address your comments to the following address:

 International Business Machines Corporation

 Department 55JA, Mail Station P384

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States & Canada): 1+845+432-9405

 FAX (Other Countries):

 Your International Access Code +1+845+432-9405

 IBMLink (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this book

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Tables . vii

About this book . ix

Who should read this book . ix

How this book is organized . ix

Conventions and terminology used in this book x

Abbreviated names . x

Prerequisite and related information xi

Using LookAt to look up message explanations xii

How to send your comments . xii

National language support (NLS) xii

Summary of changes for Parallel Environment 4.3 xiii

Chapter 1. Using the pdbx debugger 1

pdbx subcommands . 1

Starting the pdbx debugger . 4

Starting pdbx in normal mode 4

Starting pdbx in attach mode 7

Loading the partition with the load subcommand 9

Displaying tasks and their states 10

Grouping tasks . 11

Controlling program execution 18

Examining program data . 24

Other key features . 28

Overloaded symbols . 31

Exiting pdbx . 32

Chapter 2. Analyzing program performance using the PE Benchmarker

toolset . 35

What is the PE Benchmarker? 35

Using the Performance Collection Tool 38

Using the Performance Collection Tool’s graphical user interface 38

Using the Performance Collection Tool’s command-line interface 42

Creating, converting, and viewing information contained in UTE interval files 72

Converting AIX trace files into UTE interval trace files 73

Generating statistics tables from UTE interval trace files 73

Converting UTE interval files into SLOG2 files required by Argonne National

Laboratory’s Jumpshot Tool 75

Using the Profile Visualization Tool 76

Using the Profile Visualization Tool’s graphical user interface 76

Using the Profile Visualization Tool’s command line interface 80

Appendix A. Parallel environment tools commands 83

pct . 84

Subcommands of the pct command 86

block subcommand (of the pct command) 86

commcount add subcommand (of the pct command) 87

commcount remove subcommand (of the pct command) 89

commcount set mode subcommand (of the pct command) 89

commcount set path subcommand (of the pct command) 90

commcount show subcommand (of the pct command) 90

comment subcommand (of the pct command) 91

connect subcommand (of the pct command) 91

© Copyright IBM Corp. 1993, 2006 iii

||

destroy subcommand (of the pct command) 92

disconnect subcommand (of the pct command) 93

exit subcommand (of the pct command) 93

file subcommand (of the pct command) 94

find subcommand (of the pct command) 95

function subcommand (of the pct command) 95

group subcommand (of the pct command) 97

help subcommand (of the pct command) 98

list subcommand (of the pct command) 98

load subcommand (of the pct command) 99

openmp add subcommand (of the pct command) 101

openmp callsite subcommand (of the pct command) 102

openmp help subcommand (of the pct command) 104

openmp remove probe subcommand (of the pct command) 104

openmp set path subcommand (of the pct command) 105

openmp show subcommand (of the pct command) 105

point subcommand (of the pct command) 106

profile add subcommand (of the pct command) 107

profile help subcommand (of the pct command) 109

profile remove subcommand (of the pct command) 110

profile set subcommand (of the pct command) 110

profile show subcommand (of the pct command) 111

resume subcommand (of the pct command) 111

run subcommand (of the pct command) 112

select subcommand (of the pct command) 112

set subcommand (of the pct command) 113

show subcommand (of the pct command) 114

start subcommand (of the pct command) 115

stdin subcommand (of the pct command) 116

suspend subcommand (of the pct command) 116

trace add subcommand (of the pct command) 117

trace help subcommand (of the pct command) 119

trace remove subcommand (of the pct command) 120

trace set subcommand (of the pct command) 120

trace show subcommand (of the pct command) 121

wait subcommand (of the pct command) 122

pdbx . 124

Subcommands of the pdbx command 129

alias subcommand (of the pdbx command) 129

assign subcommand (of the pdbx command) 130

attach subcommand (of the pdbx command) 130

attribute subcommand (of the pdbx command) 130

back subcommand (of the pdbx command) 131

call subcommand (of the pdbx command) 131

case subcommand (of the pdbx command) 132

catch subcommand (of the pdbx command) 132

condition subcommand (of the pdbx command) 133

cont subcommand (of the pdbx command) 133

dbx subcommand (of the pdbx command) 133

delete subcommand (of the pdbx command) 134

detach subcommand (of the pdbx command) 135

dhelp subcommand (of the pdbx command) 135

display memory subcommand (of the pdbx command) 135

down subcommand (of the pdbx command) 136

dump subcommand (of the pdbx command) 136

file subcommand (of the pdbx command) 136

iv IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

func subcommand (of the pdbx command) 137

goto subcommand (of the pdbx command) 137

gotoi subcommand (of the pdbx command) 137

group subcommand (of the pdbx command) 137

halt subcommand (of the pdbx command) 139

help subcommand (of the pdbx command) 139

hook subcommand (of the pdbx command) 140

ignore subcommand (of the pdbx command) 140

list subcommand (of the pdbx command) 141

listi subcommand (of the pdbx command) 142

load subcommand (of the pdbx command) 142

map subcommand (of the pdbx command) 143

mutex subcommand (of the pdbx command) 143

next subcommand (of the pdbx command) 143

nexti subcommand (of the pdbx command) 144

on subcommand (of the pdbx command) 144

print subcommand (of the pdbx command) 146

quit subcommand (of the pdbx command) 146

registers subcommand (of the pdbx command) 146

return subcommand (of the pdbx command) 147

search subcommand (of the pdbx command) 147

set subcommand (of the pdbx command) 147

sh subcommand (of the pdbx command) 148

skip subcommand (of the pdbx command) 148

source subcommand (of the pdbx command) 148

status subcommand (of the pdbx command) 148

step subcommand (of the pdbx command) 149

stepi subcommand (of the pdbx command) 150

stop subcommand (of the pdbx command) 150

tasks subcommand (of the pdbx command) 151

thread subcommand (of the pdbx command) 152

trace subcommand (of the pdbx command) 153

unalias subcommand (of the pdbx command) 154

unhook subcommand (of the pdbx command) 155

unset subcommand (of the pdbx command) 155

up subcommand (of the pdbx command) 156

use subcommand (of the pdbx command) 156

whatis subcommand (of the pdbx command) 156

where subcommand (of the pdbx command) 156

whereis subcommand (of the pdbx command) 157

which subcommand (of the pdbx command) 157

pvt . 158

Subcommands of the pvt command 159

exit subcommand (of the pvt command) 159

export subcommand (of the pvt command) 159

help subcommand (of the pvt command) 159

load subcommand (of the pvt command) 159

report subcommand (of the pvt command) 160

sum subcommand (of the pvt command) 160

slogmerge . 161

uteconvert . 163

utemerge . 165

utestats . 167

Appendix B. Command line flags for normal or attach mode 169

Contents v

Appendix C. Profiling programs with the AIX prof and gprof commands 171

Appendix D. Supported IBM System p5 PMAPI hardware counter

groupings . 175

IBM System p5 hardware counter groupings 175

IBM System p5 Model 575 (POWER5+) hardware counter groupings 182

Appendix E. Accessibility features for PE 193

Accessibility features . 193

Keyboard navigation . 193

IBM and accessibility . 193

Notices . 195

Trademarks . 197

Acknowledgments . 198

Index . 199

vi IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

||
||

Tables

 1. Typographic conventions . x

 2. Context insensitive pdbx subcommands . 2

 3. Context sensitive pdbx subcommands . 3

 4. Debugger option flags (pdbx) . 5

 5. Loading executables on a partition . 10

 6. Adding tasks to a task group . 12

 7. Deleting tasks from a task group . 12

 8. Listing task groups . 14

 9. Task States . 14

10. pdbx subset commands . 17

11. Selecting the appropriate Welcome Dialog option 41

12. Setting the location for files generated by the PCT, and adding probes 44

13. Specifying the type of information you want to collect 53

14. Setting the output location and other preferences for the AIX trace files 54

15. Adding user markers . 58

16. Using the PVT graphical user interface to process and view profile data 77

17. Command Line Flags for Normal or Attach Mode 169

18. Profiling a parallel program, compared to profiling a serial program 172

© Copyright IBM Corp. 1993, 2006 vii

|
|
|
|

|
|
|
|
|
|
|

||

viii IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

About this book

This book describes the facilities and tools for the IBM® Parallel Environment (PE)

for AIX® program product and how to use them to debug and analyze parallel

programs. Specifically, it contains information on PE’s debuggers and profiling tools.

This book concentrates on the actual commands, graphical user interfaces, and use

of these tools as opposed to the writing of parallel programs. For this reason, you

should use this book in conjunction with IBM Parallel Environment: MPI

Programming Guide and IBM Parallel Environment: MPI Subroutine Reference.

This book assumes that AIX 5L Version 5.3 Technology Level 5300-05 (AIX 5L V5.3

TL 5300-05) or later, X-Windows, and the PE software are already installed. It also

assumes that you have been authorized to run the Parallel Operating Environment

(POE).

Note: AIX 5L Version 5.3 Technology Level 5300-05 or AIX 5L V5.3 TL 5300-05

identify the specific maintenance level required to run PE 4.3. The name AIX

5.3 is used in more general discussions.

The PE software is designed to run on an IBM eServer pSeries® network cluster.

For complete information on installing the PE software and setting up users, see

IBM Parallel Environment: Installation, (GC23-3892). For information on POE and

executing parallel programs, see IBM Parallel Environment: Operation and Use,

Volume 1 and IBM Parallel Environment: Introduction.

Who should read this book

This book is designed primarily for end users and application developers. It is also

intended for those who run parallel programs, and some of the information and

tools covered should interest system administrators. Readers should have some

experience with graphical user interface concepts such as windows, pull-down

menus, and menu bars. They should also have knowledge of the AIX operating

system and the X-Window system. Where necessary, this book provides some

background information relating to these areas. More commonly, this book refers

you to the appropriate documentation.

How this book is organized

This book contains the following information:

v Chapter 1, “Using the pdbx debugger,” on page 1 describes the Parallel

Environment’s command line debugger – pdbx. This tool uses a line-oriented

interface, allowing you to invoke a parallel program from an ASCII terminal.

v Chapter 2, “Analyzing program performance using the PE Benchmarker toolset,”

on page 35 describes the various tools in the PE Benchmarker toolset. You can

use these tools for collecting and analyzing program event trace or hardware

performance data.

v Appendix A, “Parallel environment tools commands,” on page 83 contains the

manual pages for the PE commands discussed throughout this book.

v Appendix B, “Command line flags for normal or attach mode,” on page 169

shows the command line flags for pdbx debugging in normal or attach mode.

© Copyright IBM Corp. 1993, 2006 ix

|
|

|
|
|

v Appendix C, “Profiling programs with the AIX prof and gprof commands,” on page

171 describes how to use the AIX profilers prof and gprof to profile parallel

programs.

v Appendix D, “Supported IBM System p5 PMAPI hardware counter groupings,” on

page 175.

Conventions and terminology used in this book

Note that in this document, LoadLeveler®® is also referred to as Tivoli® Workload

Scheduler LoadLeveler and TWS LoadLeveler.

This book uses the following typographic conventions:

 Table 1. Typographic conventions

Convention Usage

bold Bold words or characters represent system elements that you must

use literally, such as: command names, file names, flag names,

path names, PE component names (poe, for example), and

subroutines.

constant width Examples and information that the system displays appear in

constant-width typeface.

italic Italicized words or characters represent variable values that you

must supply.

Italics are also used for book titles, for the first use of a glossary

term, and for general emphasis in text.

[item] Used to indicate optional items.

<Key> Used to indicate keys you press.

\ The continuation character is used in coding examples in this book

for formatting purposes.

In addition to the highlighting conventions, this manual uses the following

conventions when describing how to perform tasks.

User actions appear in uppercase boldface type. For example, if the action is to

enter the tool command, this manual presents the instruction as:

ENTER

tool

Abbreviated names

Some of the abbreviated names used in this book follow.

AIX Advanced Interactive Executive

CSM Clusters Systems Management

CSS communication subsystem

CTSEC cluster-based security

DPCL dynamic probe class library

dsh distributed shell

GUI graphical user interface

HDF Hierarchical Data Format

x IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

IP Internet Protocol

LAPI Low-level Application Programming Interface

MPI Message Passing Interface

NetCDF Network Common Data Format

PCT Performance Collection Tool

PE IBM® Parallel Environment for AIX®

PE MPI IBM’s implementation of the MPI standard for PE

PE MPI-IO IBM’s implementation of MPI I/O for PE

POE parallel operating environment

pSeries IBM eServer™ pSeries

PVT Profile Visualization Tool

RISC reduced instruction set computer

RSCT Reliable Scalable Cluster Technology

rsh remote shell

STDERR standard error

STDIN standard input

STDOUT standard output

UTE Unified Trace Environment

System x IBM System x

Prerequisite and related information

The Parallel Environment for AIX library consists of:

v IBM Parallel Environment: Introduction, SA22-7947

v IBM Parallel Environment: Installation, GA22-7943

v IBM Parallel Environment: Operation and Use, Volume 1, SA22-7948

v IBM Parallel Environment: Operation and Use, Volume 2, SA22-7949

v IBM Parallel Environment: MPI Programming Guide, SA22-7945

v IBM Parallel Environment: MPI Subroutine Reference, SA22-7946

v IBM Parallel Environment: Messages, GA22-7944

To access the most recent Parallel Environment documentation in PDF and HTML

format, refer to the IBM eServer Cluster Information Center on the Web at:

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp

Both the current Parallel Environment books and earlier versions of the library are

also available in PDF format from the IBM Publications Center Web site located at:

http://www.ibm.com/shop/publications/order/

It is easiest to locate a book in the IBM Publications Center by supplying the book’s

publication number. The publication number for each of the Parallel Environment

books is listed after the book title in the preceding list.

About this book xi

||

||

|

|

|

|

|

|

|

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM

messages you encounter, as well as for some system abends and codes. You can

use LookAt from the following locations to find IBM message explanations for

Clusters for AIX:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site:

http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

v Your wireless handheld device. You can use the LookAt Mobile Edition with a

handheld device that has wireless access and an Internet browser (for example,

Internet Explorer for Pocket PCs, Blazer, or Eudora for Palm OS, or Opera for

Linux® handheld devices). Link to the LookAt Mobile Edition from the LookAt

Web site.

How to send your comments

Your feedback is important in helping to provide the most accurate and high-quality

information. If you have comments about this book or other PE documentation:

v Send your comments by e-mail to: mhvrcfs@us.ibm.com

Be sure to include the name of the book, the part number of the book, the

version of PE, and, if applicable, the specific location of the text you are

commenting on (for example, a page number or table number).

v Fill out one of the forms at the back of this book and return it by mail, by fax, or

by giving it to an IBM representative.

National language support (NLS)

For national language support (NLS), all PE components and tools display

messages that are located in externalized message catalogs. English versions of

the message catalogs are shipped with the PE licensed program, but your site may

be using its own translated message catalogs. The PE components use the AIX

environment variable NLSPATH to find the appropriate message catalog. NLSPATH

specifies a list of directories to search for message catalogs. The directories are

searched, in the order listed, to locate the message catalog. In resolving the path to

the message catalog, NLSPATH is affected by the values of the environment

variables LC_MESSAGES and LANG. If you get an error saying that a message

catalog is not found and you want the default message catalog:

ENTER

export NLSPATH=/usr/lib/nls/msg/%L/%N

 export LANG=C

The PE message catalogs are in English, and are located in the following

directories:

 /usr/lib/nls/msg/C

 /usr/lib/nls/msg/En_US

 /usr/lib/nls/msg/en_US

If your site is using its own translations of the message catalogs, consult your

system administrator for the appropriate value of NLSPATH or LANG. For more

information on NLS and message catalogs, see AIX: General Programming

Concepts: Writing and Debugging Programs.

xii IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

Summary of changes for Parallel Environment 4.3

This release of IBM Parallel Environment for AIX contains a number of functional

enhancements, including:

v PE 4.3 supports only AIX 5L™ Version 5.3 Technology Level 5300-05, or later

versions.

AIX 5L Version 5.3 Technology Level 5300-05 is referred to as AIX 5L V5.3 TL

5300-05 or AIX 5.3.

v Support for Parallel Systems Support Programs for AIX (PSSP), the SP™

Switch2, POWER3™ servers, DCE, and DFS™ has been removed. PE 4.2 is the

last release that supported these products.

v PE Benchmarker support for IBM System p5™ model 575 has been added.

v A new environment variable, MP_TLP_REQUIRED is available to detect the

situation where a parallel job that should be using large memory pages is

attempting to run with small pages.

v A new command, rset_query, for verifying that memory affinity assignments

have been performed.

v Performance of MPI one-sided communication has been substantially improved.

v Performance improvements to some MPI collective communication subroutines.

v The default value for the MP_BUFFER_MEM environment variable, which

specifies the size of the Early Arrival (EA) buffer, is now 64 MB for both IP and

User Space. In some cases, 32 bit IP applications may need to be recompiled

with more heap or run with MP_BUFFER_MEM of less than 64 MB. For more

details, see the migration information in Chapter 1 of IBM Parallel Environment:

Operation and Use, Volume 1 and Appendix E of IBM Parallel Environment: MPI

Programming Guide.

About this book xiii

|

|
|

|
|

|
|

|
|
|

|

|
|
|

|
|

|

|

|
|
|
|
|
|
|

xiv IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

Chapter 1. Using the pdbx debugger

The pdbx debugger extends the dbx debugger’s line-oriented interface and

subcommands. Some of these subcommands, however, have been modified for use

on parallel programs. The pdbx debugger is a POE application with some

modifications on the home node to provide a user interface.

Before invoking a parallel program using pdbx for interactive debugging, you first

need to compile the program and set up the execution environment. See IBM

Parallel Environment: Operation and Use, Volume 1 for more information on the

following:

v Compiling the program. Be sure to specify the -g flag when compiling the

program. This produces an object file with symbol table references needed for

symbolic debugging. It is also advisable to not use the optimization option, -O.

Using the debugger on optimized code may produce inconsistent and erroneous

results. For more information on the -g and -O compiler options, refer to their use

on other compiler commands such as cc and xlf. These compiler commands are

described in AIX 5L Commands Reference or your online manual pages.

v Copying files to individual nodes. Like poe, pdbx requires that your application

program be available to run on each node in your partition. To support source

level debugging, pdbx requires the source files to be available as well. You will

generally use the same mechanism to make the source files accessible as you

used for the application program.

v Setting up the execution environment.

Keep in mind that pdbx accepts almost all the option flags that poe accepts, and

responds to the same environment variables.

Also, throughout this discussion, keep in mind the following information.

The pSeries processors of your system are called processor nodes. A parallel

program executes as a number of individual, but related, parallel tasks on a number

of your system’s processor nodes. The group of parallel tasks is called a partition.

The processor nodes are connected on the same network, so the parallel tasks of

your partition can communicate to exchange data or synchronize execution.

pdbx subcommands

Table 2 on page 2 and Table 3 on page 3 outline the pdbx subcommands.

Complete syntax information for all these subcommands is also provided under the

entry for the pdbx command in Appendix A, “Parallel environment tools commands,”

on page 83.

The debugger supports most of the familiar dbx subcommands, as well as some

additional pdbx subcommands. In pdbx, command context refers to a setting that

controls which task(s) receive the subcommands entered at the pdbx command

prompt.

pdbx subcommands can either be context sensitive or context insensitive. The

debugger directs context sensitive subcommands to just the tasks in the current

command context. Command context has no bearing on context insensitive

commands, which control overall debugger behavior, and are generally processed

on the home node only. These include subcommands for getting help and other

information, and ending a pdbx session.

© Copyright IBM Corp. 1993, 2006 1

|

|
|

|

|
|
|
|

You can set the command context on a single task or a group of tasks as described

in “Setting command context” on page 14.

Table 2 lists the context insensitive pdbx subcommands.

 Table 2. Context insensitive pdbx subcommands

This subcommand: Is used to: For more information see:

alias [alias_name string] Set or display aliases. “Creating, removing, and listing

command aliases” on page 28

attach <[all | task_list]> Attach the debugger to some or all the tasks of a

given poe job.

“Starting pdbx in attach mode” on

page 7

detach Detach pdbx from all tasks that were attached.

This subcommand causes the debugger to exit

but leaves the poe application running.

“Exiting pdbx” on page 32

dhelp [dbx_command] Display a brief list of dbx commands or help

information about them.

“Accessing help for dbx

subcommands” on page 28

group <action>

[group_name] [task_list]

Manipulate groups. The actions are add, change,

delete, and list. To indicate a range of tasks,

enter the first and last task numbers, separated by

a colon or dash. To indicate individual tasks, enter

the numbers, separated by a space or comma.

“Grouping tasks” on page 11

help [subject] Display a list of pdbx commands and topics or

help information about them.

“Accessing help for pdbx

subcommands” on page 28

on <[group | task]>

[command]

Set the command context used to direct

subsequent commands to a specific task or group

of tasks. This subcommand can also be used to

deviate from the command context for a single

command without changing the current command

context.

“Setting the current command

context” on page 14

quit End a pdbx session. “Exiting pdbx” on page 32

source <cmd_file> Execute pdbx subcommands from a specified file.

Note: The file may contain context sensitive

commands.

“Reading subcommands from a

command file” on page 30

tasks [long] Display information about all the tasks in the

partition.

“Displaying tasks and their states”

on page 10

unalias alias_name Remove a command alias specified by the alias

subcommand.

“Creating, removing, and listing

command aliases” on page 28

Table 3 on page 3 lists the context sensitive pdbx subcommands.

2 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|

|

Table 3. Context sensitive pdbx subcommands

This subcommand: Is used to: For more information see:

delete <[event_list | * |

all]>

Remove breakpoints and tracepoints set by the

stop and trace subcommands. To indicate a

range of events, enter the first and last event

numbers, separated by a colon or a dash. To

indicate individual events, enter the number(s),

separated by a space or comma.

“Deleting pdbx events” on page 22

dbx <dbx_command> Issue a dbx subcommand directly to the dbx

sessions running on the remote nodes. This

subcommand is not intended for casual use. It

must be used with caution, because it circumvents

the pdbx server which normally manages

communication between the user and the remote

dbx sessions. It enables experienced dbx users

to communicate directly with remote dbx

sessions, but can cause problems as pdbx will

have no knowledge of the communication that

transpired.

Note: In addition to the pdbx subcommands

shown in this table, you can use most of the dbx

subcommands. The dbx subcommands are all

context sensitive. The only dbx subcommands

that you cannot use are clear, detach, edit,

multproc, prompt, run, rerun, screen, and the

sh subcommand with no arguments.

the online PE manual page for

pdbx. This manual page also

appears in Appendix A, “Parallel

environment tools commands,” on

page 83.

hook Regain control over an unhooked task. “Unhooking and hooking tasks” on

page 24

list [line_number |

line_number, line_number

| procedure]

Display lines of the current source file, or of a

procedure.

“Displaying source” on page 27

load <program>

[program_arguments]

Load a program on each node in the current

context. This can only be issued once per task

per pdbx session. pdbx will look for the program

in the current directory unless a relative or

absolute pathname is specified.

“Loading the partition with the load

subcommand” on page 9

print <[expression |

procedure]>

Print the value of an expression, or run a

procedure and print the return code of that

procedure.

“Viewing program variables” on page

25

status [all] Display a list of breakpoints and tracepoints set by

the stop and trace subcommands in the current

context. If “all” is specified, all events, regardless

of context are shown.

“Checking event status” on page 23

stop Set a breakpoint for tasks in the current context.

Breakpoints are stopping places in your program

that halt execution.

“Setting breakpoints” on page 19

trace Set a tracepoint for tasks in the current context.

Tracepoints are places in your program that, when

reached during execution, cause the debugger to

print information about the state of the program.

“Setting tracepoints” on page 20

unhook Unhook a task or group of tasks. Unhooking

allows the task(s) to run without intervention from

the debugger.

“Unhooking and hooking tasks” on

page 24

where Display a list of active procedures and functions. “Viewing program call stacks” on

page 25

<Ctrl-c> Regain debugger control when some tasks in the

current context are running. This causes a pdbx

subset prompt to be displayed, which allows a

subset of the pdbx function to be performed.

“Context switch when blocked” on

page 16

Chapter 1. Using the pdbx debugger 3

Starting the pdbx debugger

You can start the pdbx debugger in either normal mode or attach mode. In normal

mode your program runs under the control of the debugger. In attach mode you

attach to a program that is already running. Certain options and functions are only

available in one of the two modes. Since pdbx is a source code debugger, some

files need to be compiled with the -g option so that the compiler provides debug

symbols, source line numbers, and data type information.

When the application is started using pdbx in normal mode, debugger control of the

application is given to the user by default at the first executable source line within

the main routine. This is function main in C code or the routine defined by the

program statement in Fortran. In Fortran, if there is no program statement, the

program name defaults to main. If the file containing the main routine is not

compiled with -g the debugger will exit. The environment variable

MP_DEBUG_INITIAL_STOP can be set before starting the debugger to manually

set an alternate file name and source line where the user initially receives debugger

control of the application. Refer to the appendix on POE environment variables and

command line flags in IBM Parallel Environment: Operation and Use, Volume 1

Starting pdbx in normal mode

The way you start the debugger in normal mode depends on whether the

program(s) you are debugging follow the SPMD (Single Program Multiple Data) or

MPMD (Multiple Program Multiple Data) model of parallel programming. In the

SPMD model, the same program runs on each of the nodes in your partition. In the

MPMD model, different programs can run on the nodes of your partition.

If you are debugging an SPMD program, you can enter its name on the pdbx

command line. It will be loaded on all the nodes of your partition automatically. If

you are debugging an MPMD program, you will load the tasks of your partition after

the debugger is started. pdbx will look for the program in the current directory

unless a relative or absolute pathname is specified.

ENTER

pdbx [program [program_options]] [poe options] [-c command_file] [-d

nesting_depth] [-E DebugEnv [-E DebugEnv]...] [-I directory [-I directory]...]

[-F] [-x]

 This starts pdbx. If you specified a program, it is loaded on each node of

your partition and you see the message:

0031-504 Partition loaded ...

You will then see the pdbx prompt:

pdbx(all)

The prompt shows the command context all. For more information see

“Setting command context” on page 14.

ENTER

pdbx -a poe process id [limited poe options] [-c command_file] [-d

nesting_depth] [-I directory [-I directory]...] [-F] [-x]

 This starts pdbx in attach mode. See “Starting pdbx in attach mode” on

page 7 for more information.

4 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

ENTER

pdbx -h

 This writes the pdbx usage to STDERR. It includes pdbx command line

syntax and a description of pdbx options.

The options you specify with the pdbx command can be program options, POE

options, or pdbx options listed in Table 4. Program options are those that your

application program will understand.

You can use the same command line flags on the pdbx command as you use when

invoking a parallel program using the poe command. For example, you can override

the MP_PROCS variable by specifying the number of processes with the -procs

flag. Or you could use the -hostfile flag to specify the name of a host list file. For

more information on the POE command line flags, see IBM Parallel Environment:

Operation and Use, Volume 1

Note: poe uses the PATH environment variable to find the program, while pdbx

does not.

After pdbx initializes, the pdbx command prompt displays to indicate that pdbx is

ready for a command.

Table 4 describes the pdbx debugger command line flags.

 Table 4. Debugger option flags (pdbx)

Use this flag: To: For example:

-a Attach to a running poe job by specifying its process id.

This must be executed from the node where the poe job

was initiated. When using the debugger in attach mode

there are some debugger command line arguments that

should not be used. In general, any arguments that control

how the partition is set up or specify application names and

arguments should not be used.

To attach the pdbx debugger to an

already running poe job.

ENTER

pdbx -a <poe_process_id>

-c Read pdbx startup commands from the specified

commands_file. The commands stored in the specified file

are executed before command input is accepted from the

keyboard.

If the -c flag is not used, the pdbx debug program attempts

to read startup commands from the file .pdbxinit. To find this

file, it first looks in the current directory, and then in the

user’s home directory.

In a pdbx session, you can also read commands from a file

using the source subcommand. “Reading subcommands

from a command file” on page 30 describes how to use this

subcommand in pdbx.

To start the pdbx debugger and

read startup commands from a file

called start.cmd:

ENTER

pdbx -c start.cmd

-d Set the limit for the nesting of program blocks. The default

nesting depth limit is 25. This flag is passed to dbx

unmodified.

To specify a nesting depth limit:

ENTER

pdbx -d nesting.depth

Chapter 1. Using the pdbx debugger 5

|

Table 4. Debugger option flags (pdbx) (continued)

Use this flag: To: For example:

-E This flag can be used to specify an environment variable

and its value which will be set for the remote task. The -E

flag must be specified multiple times to specify multiple

environment variables. This flag has no effect when used in

combination with the -a flag.

Note: poe sets up some environment variables for the

remote task which could be overridden using the pdbx -E

flag. To resolve this, it may be necessary to check the

environment of the remote task with and without the pdbx

-E flag.

ENTER

pdbx -E

-F This flag can be used to turn off lazy reading mode. Turning

lazy reading mode off forces the remote dbx sessions to

read all symbol table information at startup time. By default,

lazy reading mode is on.

Lazy reading mode is useful when debugging large

executable files, or when paging space is low. With lazy

reading mode on, only the required symbol table information

is read upon initialization of the remote dbx sessions.

Because all symbol table information is not read at dbx

startup time when in lazy reading mode, local variable and

related type information will not be initially available for

functions defined in other files. The effect of this can be

seen with the whereis command, where instances of the

specified local variable may not be found until the other files

containing these instances are somehow referenced.

To start the pdbx debugger and

read all symbol table information:

ENTER

pdbx -F

-h Write the pdbx usage to STDERR then exit. This includes

pdbx command line syntax and a description of pdbx

options.

ENTER

pdbx -h

-I

(upper case i)

Specify a directory to be searched for an executable’s

source files. This flag must be specified multiple times to set

multiple paths. (Once pdbx is running, this list can be

overridden on a group or single node basis with the use

command.)

To add directory1 to the list of

directories to be searched when

starting the pdbx debugger:

ENTER

pdbx -I dir1

You can add as many directories as

you like to the directory list in this

way. For example, to add two

directories:

ENTER

pdbx -I dir1 -I dir2

-x Prevent the dbx command from stripping _ (trailing

underscore) characters from symbols originating in Fortran

source code. This flag allows dbx to distinguish between

symbols which are identical except for an underscore

character, such as xxx and xxx_.

To prevent trailing underscores from

being stripped from symbols in

Fortran source code:

ENTER

pdbx -x

These pdbx flags are closely tied to the flags supported by dbx. For more

information on the option flags described in this table, refer to their use with dbx as

described in AIX 5L Commands Reference and AIX 5L General Programming

Concepts: Writing and Debugging Programs.

6 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

For a listing of pdbx subcommands, you can also refer to its online manual page.

This manual page also appears in Appendix A, “Parallel environment tools

commands,” on page 83.

Starting pdbx in attach mode

The pdbx debugger provides an attach feature, which allows you to attach the

debugger to a parallel application that is currently executing. This feature is typically

used to debug large, long running, or apparently “hung” applications. The debugger

attaches to any subset of tasks without restarting the executing parallel program.

Parallel applications run on the partition managed by poe. For attach mode, you

must specify the appropriate process identifier (PID) of the poe job, so the

debugger can attach to the correct application processes contained in that particular

job. To get the PID of the poe job, enter the following command on the node where

poe was started:

$ ps -ef | grep poe

You initiate attach mode by invoking pdbx with the -a flag and the PID of the

appropriate poe process:

$ pdbx -a <poe PID>

For example, if the process id of the poe process is 12345 then the command would

be:

$ pdbx -a 12345

After you invoke the debugger in attach mode, it displays a list of tasks you can

choose. The paging tool used to display the menu will default to pg -e unless

another pager is specified by the PAGER environment variable.

pdbx starts by showing a list of task numbers that comprise the parallel job. The

debugger obtains this information by reading a configuration file created by poe

when it begins a job step. At this point you must choose a subset of that list to

attach the debugger. Once you make a selection and the attach debug session

starts, you cannot make additions or deletions to the set of tasks attached to. It is

possible to attach a different set of tasks by detaching the debugger and attaching

again, then selecting a different set of tasks.

The debugger attaches to the specified tasks. The selected executables are

stopped wherever their program counters happen to be, and are then under the

control of the debugger. The other tasks in the original poe application continue to

run. pdbx displays information about the attached tasks using the task numbering

of the original poe application partition.

Note: Since non-threaded and threaded MPI libraries have been combined, all

programs now run as threaded programs. When using the debugger, you

need to be aware of setting the current running thread. For examples, see

IBM Parallel Environment: Introduction.

Attach screen

Figure 1 shows a sample pdbx Attach screen.

Chapter 1. Using the pdbx debugger 7

The pdbx Attach screen contains a list of tasks and, for each task, the following

information:

v Task - the task number

v IP - the ip address of the node on which the task/application is running

v Node - the name of the node on which the task/application is running, if available

v PID - the process identifier of the task/application

v Program - the name of the application and arguments, if any.

Selecting tasks

After initiating attach mode, you can select a set of tasks to attach to. At the

command prompt:

ENTER

attach all

OR

ENTER

attach followed by the task_list (see “Grouping tasks” on page 11 for the

correct syntax for task_list).

It is also possible to use the quit or help command at this prompt. Any other

command will produce an error message. The quit command will not kill the

application at this point, since the debugger has not been attached as of yet.

Note: When debugging in attach mode, the load subcommand is not available. An

error message is displayed if an attempt is made to use it.

Other compiling options

pdbx provides substantial information when debugging an executable compiled with

the -g option. However, you may find it useful to attach to an application not

compiled with -g. pdbx allows you to attach to an application not compiled with -g,

however, the information provided is limited to a stack trace.

ATTENTION: 0029-9049 The following environment variables have been

ignored since they are not valid when starting the debugger

in attach mode -

 ’MP_PROCS’.

To begin debugging in attach mode, select a task or tasks to attach.

Task IP Addr Node PID Program

0 9.117.8.62 pe02.kgn.ibm.com 23870 ftoc

1 9.117.8.63 pe03.kgn.ibm.com 14908 ftoc

2 9.117.8.64 pe04.kgn.ibm.com 14400 ftoc

3 9.117.8.65 pe05.kgn.ibm.com 13114 ftoc

4 9.117.8.66 pe06.kgn.ibm.com 11330 ftoc

5 9.117.8.67 pe07.kgn.ibm.com 19784 ftoc

6 9.117.8.68 pe08.kgn.ibm.com 19524 ftoc

7 9.117.8.69 pe09.kgn.ibm.com 22086 ftoc

At the pdbx prompt enter the "attach" command followed by a

list of tasks or "all". (ex. "attach 2 4 5-7" or "attach all")

You may also type "help" for more information or "quit" to exit

the debugger without attaching.

pdbx(none)

Figure 1. pdbx Attach screen

8 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

You can also attach pdbx to an application compiled with both the -g and

optimization flags. However, the optimized code can cause some confusion when

debugging. For example, when stepping through code, you may notice the line

marker points to different source lines than you would expect. The optimization

causes this remapping of instructions to line numbers.

Command line arguments

You should not use certain command line arguments when debugging in attach

mode. If you do, the debugger will not start, and you will receive a message saying

the debugger will not start. In general, do not use any arguments that control how

the debugger partition is set up or that specify application names and arguments.

You do not need information about the application, since it is already running and

the debugger uses the PID of the poe process to attach. Other information the

debugger needs to set up its own partition, such as node names and PIDs, comes

from the configuration file and the set of tasks you select. See Appendix B,

“Command line flags for normal or attach mode,” on page 169 for a list of command

line flags showing which ones are valid in normal and in attach debugging mode.

The information in Appendix B, “Command line flags for normal or attach mode,” on

page 169 is also true for the corresponding environment variables, however pdbx

ignores the invalid setting. The debugger displays a message containing a list of the

variables it ignores, and continues.

For example, if you had MP_PROCS set, when the debugger starts in attach mode

it ignores the setting. It displays a message saying it ignored MP_PROCS, and

continues initializing the debug session.

Loading the partition with the load subcommand

Before you can debug a parallel program with the pdbx debugger, you need to load

your partition. If you specified a program name on the pdbx command, it is already

loaded on each task of your partition. If not, you need to load your partition using

the load subcommand. pdbx will look for the program in the current directory

unless a relative or absolute pathname is specified. The Partition Manager allocates

the tasks of your partition when you enter the pdbx command. It does this either by

connecting to the Resource Manager or by looking to your host list file. The number

of tasks in the partition depends on the value of the MP_PROCS environment

variable (or the value specified on the -procs flag) when you enter the pdbx

command.

The following pdbx commands are available before the program is loaded on all

tasks:

v alias

v group

v help

v load

v on

v quit

v source

v tasks

v unalias

Chapter 1. Using the pdbx debugger 9

Table 5 describes how to load executables on the partition. It explains how to load

the same executable on all tasks of a partition and how to load separate

executables on different tasks of a partition.

 Table 5. Loading executables on a partition

To load the same executable on all tasks of the

partition: To load separate executables on the partition:

CHECK

the pdbx command prompt to make sure the

command context is on all tasks. The context all

is the default when you start the pdbx debugger,

so the prompt should read:

pdbx(all)

If the command context is not set on all tasks, reset it. To

do this:

ENTER

on all
Once the command context is on all tasks:

ENTER

load program [program_options]

 The specified program is loaded onto all tasks in

the partition, and the message “Partition

loaded...” displays. The parallel program runs up

to the first executable statement and stops.
Note: The example above has the same effect as

putting the program name and options on the command

line.

SET the command context before loading each

program. For example, say your partition

consists of five tasks numbered 0 through 4. To

load a program named program1 on task 0 and

a program named program2 on tasks 1 through

4, you would:

ENTER

on 0

 The debugger sets the command context on

task 0

ENTER

load program1 [program_options]

 The debugger loads program1 on task 0.

ENTER

group add groupa 1-4

 The debugger creates a task group named

groupa consisting of tasks 1 through 4.

ENTER

on groupa

 The debugger sets the command context on

tasks 1 through 4.

ENTER

load program2 [program_options]

 The debugger loads program2 onto tasks 1

through 4, and the message “Partition loaded...”

displays. The parallel program runs up to the

first executable statement and stops.

Displaying tasks and their states

With the tasks subcommand, you display information about all the tasks in the

partition. Task state information is always displayed (see Table 9 on page 14 for

information on task states). If you specify “long” after the command, it also displays

the name, ip address, and job manager number associated with the task.

Following is an example of output produced by the tasks and tasks long

command.

pdbx(others) tasks

 0:D 1:D 2:U 3:U 4:R 5:D 6:D 7:R

pdbx(others) tasks long

 0:Debug ready pe04.kgn.ibm.com 9.117.8.68 -1

 1:Debug ready pe03.kgn.ibm.com 9.117.8.39 -1

 2:Unhooked pe02.kgn.ibm.com 9.117.11.56 -1

 3:Unhooked augustus.kgn.ibm.com 9.117.7.77 -1

10 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|
|
|

|

|
|
|
|

4:Running pe04.kgn.ibm.com 9.117.8.68 -1

 5:Debug ready pe03.kgn.ibm.com 9.117.8.39 -1

 6:Debug ready pe02.kgn.ibm.com 9.117.11.56 -1

 7:Running augustus.kgn.ibm.com 9.117.7.77 -1

Grouping tasks

You can set the context on a group of tasks by first using the context insensitive

group subcommand to collect a number of tasks under a group name you choose.

None of these tasks need to have been loaded for you to include them in a group.

Later, you can set the context on all the tasks in the group by specifying its group

name with the on subcommand.

For example, you could use the group subcommand to collect a number of tasks

(tasks 0, 1, and 2) as a group named groupa. Then, to set the context on tasks 0,

1, and 2, you would:

ENTER

on groupa

 The debugger sets the command context on tasks 0, 1, and 2.

Another use of the group subcommand is to give a name to a task. For example,

assume you have a typical master/worker program. Task 0 is the master task,

controlling a number of worker tasks. You could create a group named master

consisting of just task 0. Then, to set the context on the master task you would:

ENTER

on master

 The debugger sets the command context on task 0. Entering on master,

therefore, is the same as entering on 0, but would be more meaningful and

easier to remember.

The group subcommand has a number of actions. You can use it to:

v Create a task group, or add tasks to an existing task group

v Delete a task group, or delete tasks from an existing task group

v Change the name of an existing task group

v List the existing task groups, or list the members of a particular task group.

Syntax for group_name –

Provide a group name that is no longer than 32 characters which starts with an

alphabetic character, and is followed by any alphanumeric character combination.

Syntax for task_list –

To indicate a range of tasks, enter the first and last task numbers, separated by a

colon or dash. To indicate individual tasks, enter the numbers, separated by a

space or comma.

Note: Group names all, none, and attached are reserved group names. They are

used by the debugger and cannot be used in the group add or group

delete commands. However, the group all or attached can be renamed using

the group change command, if it currently exists in the debugging session.

Adding a task to a task group

To add a task to a new or already existing task group, use the add action of the

group subcommand. The syntax is:

Chapter 1. Using the pdbx debugger 11

group add group_name task_list

If the specified group_name already exists, then the debugger adds the tasks in

task_list to that group. If the specified group_name does not yet exist, the debugger

creates it.

Table 6 describes how to add tasks to a group, based on whether you want to add

a single task, a collection of tasks, or a range of tasks.

 Table 6. Adding tasks to a task group

The variable task_list can be:

For example, to add

the following

task(s) to groupa: You would ENTER:

The following message

displays:

a single task task 6 group add groupa 6 1 task was added to group

"groupa".

a collection of tasks tasks 6, 8, and 10 group add groupa 6 8 10 3 tasks were added to group

"groupa".

a range of tasks tasks 6 through 10 group add groupa 6:10 5 tasks were added to group

"groupa".

a range of tasks tasks 6 through 10 group add groupa 6-10 5 tasks were added to group

"groupa".

Deleting tasks from a task group

To delete tasks from a task group, use the delete action of the group

subcommand. The syntax is:

group delete group_name [task_list]

Table 7 describes how to delete tasks from a group, based on whether you want to

delete a single task, a collection of tasks, or a range of tasks.

 Table 7. Deleting tasks from a task group

The variable task_list can be:

For example, to

delete the following

from groupa: You would ENTER:

The following message

displays:

a single task task 6 group delete groupa 6 Task: 6 was successfully

deleted from group "groupa".

a collection of tasks task 6, 8, and 10 group delete groupa 6 8

10

Task: 6 was successfully

deleted from group "groupa".

Task: 8 was successfully

deleted from group "groupa".

Task: 10 was successfully

deleted from group "groupa".

12 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|
|

|

|
|

|

Table 7. Deleting tasks from a task group (continued)

The variable task_list can be:

For example, to

delete the following

from groupa: You would ENTER:

The following message

displays:

a range of tasks tasks 6 through 10 group delete groupa 6:10 Task: 6 was successfully

deleted from group "groupa".

Task: 7 was successfully

deleted from group "groupa".

Task: 8 was successfully

deleted from group "groupa".

Task: 9 was successfully

deleted from group "groupa".

Task: 10 was successfully

deleted from group "groupa".

a range of tasks tasks 6 through 8 group delete groupa 6-8 Task: 6 was successfully

deleted from group "groupa".

Task: 7 was successfully

deleted from group "groupa".

Task: 8 was successfully

deleted from group "groupa".

You can also use the delete action of the group subcommand to delete an entire

task group. For example, to delete the task group groupa, you would:

ENTER

group delete groupa

 The debugger deletes the task group.

Note: The predefined task group all cannot be deleted.

Changing the name of a task group

To change the name of an existing task group, use the change action of the group

subcommand. The syntax is:

group change old_group_name new_group_name

For example, say you want to change the name of task group group1 to groupa. At

the pdbx command prompt, you would:

ENTER

group change group1 groupa

 The following message displays:

Group "group1" has been renamed to "groupa".

Listing task groups

To list task groups, their members, and task states use the list action of the group

subcommand. The syntax is:

group list [group_name]

Table 8 on page 14 describes how to list a task groups, based on whether you want

to list all the task groups or list all the members of a single task group.

Chapter 1. Using the pdbx debugger 13

|

|
|

Table 8. Listing task groups

You can use the list

action to:

For example, if

you ENTER: Then:

list all the task

groups.

group list The debugger displays a list of all existing task groups and their

members. An example of such a list is shown below.

pdbx(0) group list

allTasks 0:R 1:D 2:D 3:U 4:U 5:D 6:D

 7:D 8:D 9:D 10:D 11:D

evenTasks 0:R 2:D 4:U 6:D 8:D 10:R

oddTasks 1:D 3:U 5:D 7:D 9:D 11:R

master 0:R

workers 1:D 2:D 3:U 4:U 5:D 6:D 7:D

 8:D 9:D 10:R 11:R

list all the members

of a single task

group

group list oddTasks

The debugger displays a list of all the members of task group oddTasks.

1:D 3:U 5:D 7:D 9:D 11:R

When you list tasks, a single letter will follow each task number. Table 9 represents

the state of affairs on the remote tasks. Common states are debug ready, where

pdbx commands can be issued, and running, where the application has control and

is executing.

 Table 9. Task States

This letter displayed

after a task number: Represents: And indicates that:

N Not loaded the remote task has not yet been loaded with an executable.

S Starting the remote task is being loaded with an executable.

D Debug ready the remote task is stopped and debug commands can be issued.

R Running the remote task is in control and executing the program.

X Exited the remote task has completed execution.

U Unhooked the remote task is executing without debugger intervention.

E Error the remote task is in an unknown state.

When thinking about “task states”, consider the perspective of the remote tasks

which are each running a copy of dbx. pdbx attempts to coordinate activities in

multiple dbx sessions. There are times when this is not possible, typically when one

or more tasks have not yet stopped. In this case, from a remote task’s dbx

perspective, a dbx prompt has not yet been displayed, and your application is still

running. Similarly, pdbx will not display a pdbx prompt until all the remote dbx

sessions are “debug ready”.

Setting command context

You can set the current command context on a specific task or group of tasks so

that the debugger directs subsequent context sensitive subcommands to just that

task or group. These instructions also shows how you can temporarily deviate from

the current command context you set.

Setting the current command context: When you begin a pdbx session, the

default command context is set on all tasks. The pdbx command prompt always

indicates the current command context setting, so it initially reads:

14 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|

|
|
|
|

pdbx(all)

Before you can do an on command, you may need to set the thread context to the

current running thread, as described in the IBM Parallel Environment: Introduction.

Note: Programs that are not threaded still use threads created by the MPI library.

You can use the on subcommand to set the current command context on one task

or a group of tasks. The debugger then directs context sensitive subcommands to

just the task(s) specified by group or task name.

You can use the on subcommand to set the current command context before you

load your partition. The debugger will only direct context sensitive subcommands to

the tasks in the current context. The syntax of the on subcommand is:

on {group_name | task_id}

For example, assume you have a parallel program divided into tasks numbered 0

through 4. To set the current command context on just task 1:

ENTER

on 1

 The pdbx command prompt indicates the new setting of the current

command context.

pdbx(1)

You can also use the on subcommand to set the current command context on all

the tasks in a specified task group. The task group all – consisting of all tasks – is

automatically defined for you and cannot be deleted. To set the command context

back on all tasks, you would:

ENTER

on all

 The pdbx command prompt shows that the current command context has

changed, and that the debugger will now direct context sensitive

subcommands to all tasks in the partition.

pdbx(all)

When you switch context using on context_name, and the new context has at least

one task in the “running” state, a message is displayed stating that at least one task

is in the “running” state. No pdbx prompt is displayed until all tasks in this context

are in the “debug ready” state.

When you switch to a context where all tasks are in the “debug ready” state, the

pdbx prompt is displayed immediately, indicating pdbx is ready for a command.

At the pdbx subset prompt, on context_name causes one of the following to

happen: either a pdbx prompt is displayed; or a message is displayed indicating the

reason why the pdbx prompt will be displayed at a later time. This is generally

because one of the tasks is in “running” state. See “Context switch when blocked”

on page 16 for more information.

Temporarily deviating from the current command context: There are times

when it is convenient to deviate from the current command context for a single

command. You can temporarily deviate from the command context by entering the

on subcommand with, on the same line, a context sensitive subcommand. The

Chapter 1. Using the pdbx debugger 15

pdbx prompt will be presented after all of the tasks in the temporary context have

completed the command specified. It is possible, using <Ctrl-c> followed by the

back or the on command, to issue further pdbx commands in the original context.

The syntax is:

on {group_name | task_id} [subcommand]

For example, assume a task group named groupa contains tasks 3 through 5. The

current command context is on this group. You want to set a breakpoint at line 99 of

task 3 only, and then continue directing commands to all three members of groupa.

One way to do this is to enter the three subcommands shown in the following

example. This example shows the pdbx command prompt for additional illustration.

pdbx(groupa) on 3

pdbx(3) stop at 99

pdbx(3) on groupa

pdbx(groupa)

It is easier, however, to temporarily deviate from the current command context.

pdbx(groupa) on 3 stop at 99

pdbx(groupa)

The context sensitive stop subcommand is directed to task 3 only, but the current

command context is unchanged. The next command entered at the pdbx command

prompt is directed to all the tasks in the groupa task group.

At a pdbx prompt, you cannot use on context_name pdbx_command if any of the

tasks in the specified context are running.

Context switch when blocked

When a task is blocked (there is no pdbx prompt), you can press <Ctrl-c> to

acquire control. This displays the pdbx subset prompt pdbx-subset([group |

task]), and provides a subset of pdbx functionality including:

v Changing the current context

v Displaying information about groups/tasks

v Interrupting the application

v Showing breakpoint/tracepoint status

v Getting help

v Exiting the debugger.

You can change the subset of tasks to which context sensitive commands are

directed. Also, you can understand more about the current state of the application,

and gain control of your application at any time, not just at user-defined

breakpoints.

When a pdbx subset prompt is encountered, all input you type at the command line

is intercepted by pdbx. All commands are interpreted and operated on by the home

node. No data is passed to the remote nodes and standard input (STDIN) is not

given to the application. Most commands in the pdbx subset produce information

about the application and display the pdbx subset prompt. The exceptions are the

halt, back, on, and quit commands. The halt, back, and on commands cause the

pdbx prompt to be displayed when all of the tasks in the current context are in

debug ready state.

16 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

The following example shows how the function works. A user is trying to understand

the behavior of a program when tasks in the current context hang. This is a four

task job with two groups defined called low and high. Low has tasks 0 and 1 while

high has tasks 2 and 3. A breakpoint is set after a blocking read in task 2, and

somewhere else in task 3. Group high is allowed to continue, and task 2 has a

blocking read that will be satisfied by a write from task 0. Since task 0 is not

executing, the job is effectively deadlocked and the pdbx prompt will not be

displayed. The effective deadlock happens because the debugger controls some of

the tasks that would otherwise be running. This could be called a debugger induced

deadlock.

Using <Ctrl-c> allows the debugger to switch to task 0, then step past the write that

satisfies the blocking read in task 2. A subsequent switch to group high shows task

2.

pdbx subset commands: Table 10 shows some commands that are uniquely

available at the pdbx subset prompt, plus other pdbx commands that can be used.

Certain commands are not allowed. The available commands keep the same

command syntax as the pdbx subcommands (see “pdbx subcommands” on page

1).

 Table 10. pdbx subset commands

This subset

command: Is used to: For more information see:

alias [alias_name

string]

Set or display aliases. “Creating, removing, and listing

command aliases” on page 28

back Return to a pdbx prompt. “Returning to a pdbx prompt” on

page 18

group <action>

[group_name]

[task_list]

Manipulate groups. The actions are add, change,

delete, and list. To indicate a range of tasks, enter the

first and last task numbers, separated by a colon or

dash. To indicate individual tasks, enter the numbers,

separated by a space or comma.

“Grouping tasks” on page 11

halt [all] Interrupt all tasks in the current context that are running.

If “all” is specified, all tasks, regardless of state, are

interrupted. This command always returns to a pdbx

prompt.

“Interrupting tasks” on page 20

help [subject] Display a list of pdbx commands and topics or help

information about them.

“Accessing help for pdbx

subcommands” on page 28

on <[group | task]> Set the current context for later subcommands. This

command always returns to a pdbx prompt.

“Setting command context” on

page 14

source <cmd_file> Execute subcommands stored in a file.

Note: The file may contain context sensitive

commands.

“Reading subcommands from a

command file” on page 30

status [all] Display the trace and stop events within the current

context. If “all” is specified, all events, regardless of

context, are displayed.

“Checking event status” on page

23

tasks [long] Display processes (tasks) and their states. “Displaying tasks and their states”

on page 10

quit Exit the pdbx program and kill the application. “Exiting pdbx” on page 32

unalias alias_name Remove a previously defined alias. “Creating, removing, and listing

command aliases” on page 28

Chapter 1. Using the pdbx debugger 17

|

Table 10. pdbx subset commands (continued)

This subset

command: Is used to: For more information see:

<Ctrl-c> Has no effect, except to display the following message:

Typing Ctrl-c from the pdbx subset prompt

has no effect.

Use the halt command to interrupt

the application.

Use the quit command to quit pdbx.

Type help then enter to view brief help of

the commands available.

“Context switch when blocked” on

page 16

Returning to a pdbx prompt: The back command causes the pdbx prompt to be

displayed, when all the tasks in the current context are in “debug ready” state. You

can use the back command if you want the application to continue as it was before

<Ctrl-c> was issued. Also, you can use it if during subset mode all of the nodes are

checked into debug ready state, and you want to do normal pdbx processing. The

back command is only valid in pdbx subset mode.

It is also possible to return to the pdbx prompt using the on and the halt

commands.

Controlling program execution

Like the dbx debugger, pdbx lets you set breakpoints and tracepoints to control

and monitor program execution. Breakpoints are stopping places in your program.

They halt execution, enabling you to then examine the state of the program.

Tracepoints are places in the program that, when reached during execution, cause

the debugger to print information about the state of the program. An occurrence of

either a breakpoint or a tracepoint is called an event.

If you are already familiar with breakpoints and tracepoints as they are used in dbx,

be aware that they work somewhat differently in pdbx. The subcommands for

setting, checking, and deleting them are similar to their counterparts in dbx, but

have been modified for use on parallel programs. These differences stem from the

fact that they can now be directed to any number of parallel tasks.

This section describes how to:

v Set a breakpoint for tasks in the current context using the stop subcommand.

v Use the halt subcommand to interrupt tasks in the current context.

v Set a tracepoint for tasks in the current context using the trace subcommand.

v Use the delete subcommand to remove events for tasks in the current context.

v Use the status subcommand to display events set for tasks in the current

context.

If you are already familiar with the dbx subcommands stop, trace, status, and

delete, a discussion of how these subcommands are changed for pdbx is provided.

If you are unfamiliar with dbx, an introduction to breakpoints and tracepoints is

provided.

Refer to AIX 5L Commands Reference and AIX 5L General Programming Concepts:

Writing and Debugging Programs for more information on subcommands.

18 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|

|

|

|

|

|

|
|

|
|

|
|

Setting breakpoints

The stop subcommand sets breakpoints for all tasks in the current context. When

all tasks reach some breakpoint, execution stops and you can then examine the

state of the program using other pdbx or dbx subcommands. These breakpoints

can be different on each task.

The syntax of this context sensitive subcommand is:

stop if <condition>

stop at <source_line_number> [if <condition>]

stop in <procedure> [if <condition>]

stop <variable> [if <condition>]

stop <variable> at <source_line_number>

[if <condition>]

stop <variable> in <procedure> [if <condition>]

Specifying stop at <source_line_number> causes the breakpoint to be triggered

each time that source line is reached.

Specifying stop in <procedure> causes the breakpoint to be triggered each time

the program counter reaches the first executable source line in the procedure

(function, subroutine).

Using the <variable> argument to stop causes the breakpoint to be triggered when

the contents of the variable changes. This form of breakpoint can be very time

consuming. For better results, when possible, further qualify these breakpoints with

a source_line or procedure argument.

Specify the <condition> argument using the syntax described by “Specifying

expressions” on page 30.

For example, to set a breakpoint at line 19 for all tasks in the current context, you

would:

ENTER

stop at 19

 The debugger displays a message reporting the event it has built. The

message includes the current context, the event ID associated with your

breakpoint, and an interpretation of your command. For example:

all:[0] stop at "ftoc.c":19

The message reports that a breakpoint was set for the tasks in the task

group all, and that the event ID associated with the breakpoint is 0. Notice

that the syntax of the interpretation is not exactly the same as the

command entered.

Notes:

1. The pdbx debugger will not set a breakpoint at a line number in a group

context if the group members have different current source files. Instead, the

following error message will be displayed.

Chapter 1. Using the pdbx debugger 19

ERROR: 0029-2081 Cannot set breakpoint or tracepoint event in

 different source files.

If this happens, you can either:

v change the current context so that the stop subcommand will be directed to

tasks with identical source files.

v set the same source file for all members of the group using the file

subcommand.

2. When specifying a variable name on the stop subcommand in pdbx, it is

important to use fully-qualified names as arguments. See “Specifying variables

on the trace and stop subcommands” on page 22 for more information.

3. For further details on the stop subcommand, refer to its use on the dbx

command as described in AIX 5L Commands Reference and AIX 5L General

Programming Concepts: Writing and Debugging Programs.

Initial automatic breakpoint: The initial automatic breakpoint, which is set by

default at function main, for pdbx can be redefined by the environment variable

MP_DEBUG_INITIAL_STOP. See the manual page for the pdbx command in

Appendix A, “Parallel environment tools commands,” on page 83 for more

information.

Interrupting tasks

By using the halt command, you interrupt all tasks in the current context that are

running. This allows the debugger to gain control of the application at whatever

point the running tasks happen to be in the application. To a dbx user, this is the

same as using <Ctrl-c>. This command works at the pdbx prompt and at the pdbx

subset prompt. If you specify “all” with the halt command, all running tasks,

regardless of context, are interrupted.

Note: At a pdbx prompt, the halt command never has any effect without “all”

specified. This is because by definition, at a pdbx prompt, none of the tasks

in the current context are in “running” state.

The halt all command at the pdbx prompt affects tasks outside of the current

context. Messages at the prompt show the task numbers that are and are not

interrupted, but the pdbx prompt returns immediately because the state of the tasks

in the current context is unchanged.

When using halt at the pdbx subset prompt, the pdbx prompt occurs when all

tasks in the current context have returned to “debug ready” state. If some of the

tasks in the current context are running, a message is presented.

Setting tracepoints

The trace subcommand sets tracepoints for all tasks in the current context. When

any task reaches a tracepoint, it causes the debugger to print information about the

state of the program for that task.

The syntax of this context sensitive subcommand is:

trace [in <procedure>] [if <condition>]

trace <source_line_number> [if <condition>]

trace <procedure> [in <procedure>]

[if <condition>]

20 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|
|
|
|
|

trace <variable> [in <procedure>]

[if <condition>]

trace <expression> at <source_line_number>

[if <condition>]

Specifying trace with no arguments causes trace information to be displayed for

every source line in your program.

Specifying trace <source_line_number> causes the tracepoint to be triggered each

time that source line is reached.

Specifying trace [in <procedure>] causes the tracepoint to be triggered each time

your program executes a source line within the procedure (function, subroutine).

Using the <variable> argument to trace causes the tracepoint to be triggered when

the contents of the variable changes. This form of tracepoint can be very time

consuming. For better results, when possible, further qualify these tracepoints with

a source_line_number or procedure argument.

Specify the <condition> argument using the syntax described by “Specifying

expressions” on page 30.

The trace subcommand prints tracing information for a specified procedure,

function, sourceline, expression, variable, or condition. For example, to set a

tracepoint for the variable foo at line 21 for all tasks in the current context, you

would:

ENTER

trace foo at 21

 The debugger displays a message reporting the event it has built. The

message includes the current context, the event ID associated with your

tracepoint, and an interpretation of your command. For example:

all:[1] trace foo at "bar.c":21

 This message reports that the tracepoint was set for the tasks in the task

group all, and that the event ID associated with the tracepoint is 1. Notice

that the syntax of the interpretation is not exactly the same as the

command entered.

Notes:

1. The pdbx debugger will not set a tracepoint at a line number in a group

context if the group members have different current source files. Instead, the

following error message will be displayed.

ERROR: 0029-2081 Cannot set breakpoint or tracepoint event in

 different source files.

If this happens, you can either:

v change the current context so that the trace subcommand will be directed to

tasks with identical source files.

v set the same source file for all members of the group using the file

subcommand.

2. When specifying a variable name on the trace subcommand in pdbx, it is

important to use fully-qualified names as arguments. See “Specifying variables

on the trace and stop subcommands” on page 22 for more information.

Chapter 1. Using the pdbx debugger 21

3. For further detail on the trace subcommand, refer to its use on the dbx

command as described in AIX 5L Commands Reference

Specifying variables on the trace and stop subcommands

When specifying a variable name as an argument on either the stop or trace

subcommand, you should use fully-qualified names. This is because, when the stop

or trace subcommand is issued, the tasks of your program could be in different

functions, and the variable name may resolve differently depending on a task’s

position.

For example, consider the following SPMD code segment in myfile.c. It is running

as two parallel tasks – task 0 and task 1. Task 0 is in func1 at line 4, while task 1 is

in func2 at line 9.

1 int i;

2 func1()

3 {

4 i++;

5 }

6 func2()

7 {

8 int i;

9 i++;

10 }

To display the full qualification of a given variable, you use the which subcommand.

For example, to display the full qualification of the variable i if the current context is

all:

ENTER

which i

 The pdbx debugger displays the full qualification of the variable specified.

0:@myfile.i (from line 1 of previous example)

1:@myfile.func2.i (from line 8 of previous example)

Because the tasks are at different lines, issuing the following stop command would

set a different breakpoint for each task:

stop if (i == 5)

The debugger would display a message reporting the event it has built.

all:[0] stop if (i == 5)

The i for task 0, however, would represent the global variable (@myfile.i) while the i

for task 1 would represent the local variable i declared within func2

(@myfile.func2.i). To specify the global variable i without ambiguity on the stop

subcommand, you would:

ENTER

stop if (@myfile.i == 5)

 The debugger reports the event it has built.

all:[0] stop if (@myfile.i == 5)

Deleting pdbx events

The delete subcommand removes events (breakpoints and tracepoints) of the

specified pdbx event numbers. To indicate a range of events, enter the first and last

event numbers, separated by a colon or dash. To indicate individual events, enter

22 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

the numbers, separated by a space or comma. You can specify “ * ”, which deletes

all events that were created in the current context. You can also specify “all”, which

deletes all events regardless of context. The syntax of this context sensitive

subcommand is:

delete [event_list | * | all]

The event number is the one associated with the breakpoint or tracepoint. This

number is displayed by the stop and trace subcommands when an event is built.

Event numbers can also be displayed using the status subcommand. The output of

the status command shows the creating context as the first token on the left before

the colon.

Event numbers are unique to the context in which they were set, but not globally

unique. Keep in mind that, in order to remove an event, the context must be on the

appropriate task or task group, except when using the “all” keyword. For example,

say the current context is on task 1 and the output of the status subcommand is:

1:[0] stop in celsius

all:[0] stop at "foo.c":19

all:[1] trace "foo.c":21

To delete all these events, you would do one of the following:

ENTER on 1

 delete 0

 on all

 delete 0,1

OR

ENTER on 1

 delete 0

 on all

 delete *

OR

ENTER delete all

Checking event status

A list of pdbx events can be displayed using the status subcommand. You can

specify “all” after this command to list all events (breakpoints and tracepoints) that

have been set in all groups and tasks. This is valid at the pdbx prompt and the

pdbx subset prompt.

The following shows examples of status, status all, and incorrect syntax with

different breakpoints set on three different groups and two tasks.

pdbx(all) status

all:[0] stop at "test/vtsample.c":60

pdbx(all) status all

1:[0] stop in main

2:[0] stop in mpl_ring

all:[0] stop at "test/vtsample.c":60

evenTasks:[0] stop at "test/vtsample.c":58

oddTasks:[0] stop at "test/vtsample.c":56

Chapter 1. Using the pdbx debugger 23

pdbx(all) status woops

0029-2062 The correct syntax is either ’status’ or ’status all’.

Because the status command (without “all” specified) is context sensitive, it will not

display status for events outside the context.

Unhooking and hooking tasks

The unhook subcommand lets you unhook a task so that it executes without

intervention from the debugger. This subcommand is context sensitive and similar to

the detach subcommand in dbx. The important difference is that you can regain

control over a task that has been unhooked, while you cannot regain control over

one that has been detached. To regain control over an unhooked task, use the

hook subcommand. Detach is not supported in pdbx.

To better understand the hook and unhook subcommands, consider the following

example. You are debugging a typical master/worker program containing many

blocking sends and receives. You have created two task groups. One – named

workers – contains all the worker tasks, and the other – named master – contains

the master task. You would like to manipulate the master task and let the worker

tasks process without debugger interaction. This would save you the bother of

switching the command context back and forth between the two task groups.

Since the unhook subcommand is context sensitive, you must first set the context

on the workers task group using the on subcommand. At the pdbx command

prompt:

ENTER

on workers

 The debugger sets the command context on the task group workers.

ENTER

unhook

 The debugger unhooks the tasks in the task group workers.

The worker tasks are still indirectly affected by the debugger since they might, for

example, have to wait on a blocking receive for a message from the master task.

However, they do execute without any direct interaction from the debugger. If you

later wish to reestablish control over the tasks in the workers task group, you would,

assuming the context is on the workers task group:

ENTER

hook

 The debugger hooks any unhooked task in the current command context.

Note: The hook subcommand is actually an interrupt. When you interrupt a

blocking receive, you cause the request to fail. If the program does not deal

with an interrupted receive, then data loss may occur.

Examining program data

The where, print, and list subcommands of pdbx can be used for displaying and

verifying data. With these commands, you can display a list of procedures and

functions, view your program variables, and display your source code.

24 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|
|
|

Viewing program call stacks

The where subcommand displays a list of active procedures and functions.

The syntax of this context sensitive subcommand is:

where

To view the stack trace, issue the where command. The following stack trace was

encountered after halting task 1. You can see that the main routine at line 144 has

issued an mpi_recv() call.

pdbx(1) where

read(??, ??, ??) at 0xd07b5ce0

readsocket() at 0xd07542f4

kickpipes() at 0xd0750e14

mpci_recv() at 0xd076032c

_mpi_recv() at 0xd0700e2c

MPI__Recv() at 0xd06ffab8

mpi__recv() at 0xd03c4474

main(), line 144 in "send1.f"

Viewing program variables

The print subcommand does either of the following:

v Prints the value of a list of expressions, specified by the expression parameters.

v Executes a procedure, specified by the procedure parameter, and prints the

return value of that procedure. Parameters that are included are passed to the

procedure.

The syntax of this context sensitive subcommand is:

print expression ...

print procedure ([parameters])

See “Specifying expressions” on page 30 for a description of valid expressions.

Following are some examples of printing portions of a two dimensional array of

floats in a c program which is running on two nodes.

To display the type of array ff, enter:

pdbx(all) whatis ff

 0:float ff[10][10];

 1:float ff[10][10];

We can see the differences in the array values across the two nodes.

To show elements 4 through 7 of rows 2 and 3, enter:

pdbx(all) print ff[2..3][4..7]

 0:[2][4] = 30.0000076

 0:[2][5] = 42.0

 0:[2][6] = 0.0

 0:[2][7] = -3.52516241e+30

 0:[3][4] = -3.54361545e+30

 0:[3][5] = -3.60971468e+30

 0:[3][6] = 2.68063283e-09

 0:[3][7] = 4.65661287e-10

 0:

 1:[2][4] = -1.60068157e+10

 1:[2][5] = 0.0

 1:[2][6] = 0.0

Chapter 1. Using the pdbx debugger 25

1:[2][7] = -3.52516241e+30

 1:[3][4] = -3.54361545e+30

 1:[3][5] = -3.60971468e+30

 1:[3][6] = 2.63675126e-09

 1:[3][7] = 1.1920929e-07

 1:

The same results as above could be achieved by entering:

print ff(2..3,4..7)

The array ff is being processed within a loop with loop counters i and j. The

following demonstrates printing multiple variables and using program variables to

specify the array elements.

pdbx(all) print "i is:", i, "\tj is:", j, "\n", ff[i][j..j+1]

 1:i is: 0 j is: 1

 1: [0][1] = -3.54331806e+30

 1:[0][2] = 4.40487202e-10

 1:

 0:i is: 2 j is: 6

 0: [2][6] = 0.0

 0:[2][7] = -3.52516241e+30

 0:

Following are some examples which display the elements of an array of structs:

The command whatis here is used to show that the type of the variable tree is an

array size 4 of wood_attr_t’s.

pdbx(0) whatis tree

 0:wood_attr_t tree[4];

Here the whatis command shows that wood_attr_t is a typedef for the listed

structure.

pdbx(0) whatis wood_attr_t

 0:typedef struct {

 0: int max_age;

 0: int max_size;

 0: int is_hard_wood;

 0:} wood_attr_t;

This whatis command shows that this_tree is a wood_attr_t ptr.

pdbx(0) whatis this_tree

 0:wood_attr_t *this_tree;

To display the elements of the first three entries in the tree array, enter:

pdbx(0) print tree[0..2]

 0:[0] = (max_age = 150, max_size = 120, is_hard_wood = 0)

 0:[1] = (max_age = 250, max_size = 150, is_hard_wood = 1)

 0:[2] = (max_age = 200, max_size = 125, is_hard_wood = 0)

 0:

To display the element max_size of entry 1 of the tree array, enter:

pdbx(0) p tree[1].max_size

 0:150

To display the entry that this_tree is pointing to, enter:

pdbx(0) p *this_tree

 0:(max_age = 200, max_size = 125, is_hard_wood = 0)

To display just the max_size of the entry that this_tree is pointing to, enter:

26 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

pdbx(0) p this_tree->max_size

 0:125

Following are some examples of displaying elements of a two dimensional array of

reals in a Fortran program:

To take a look at the type of var43:

pdbx(all) whatis var43

 real*4 var43(4,3)

To display the entire array var43, enter:

pdbx(all) print var43

(1,1) 11.0

(2,1) 21.0

(3,1) 31.0

(4,1) 41.0

(1,2) 12.0

(2,2) 22.0

(3,2) 32.0

(4,2) 42.0

(1,3) 13.0

(2,3) 23.0

(3,3) 33.0

(4,3) 43.0

To display a portion of the array var43, enter:

pdbx(all) print var43(1..2, 2..3)

(1,2) = 12.0

(2,2) = 22.0

(1,3) = 13.0

(2,3) = 23.0

Refer to AIX 5L General Programming Concepts: Writing and Debugging Programs

for more information on expression handling.

Displaying source

The list subcommand displays a specified number of lines of the source file. The

number of lines displayed is specified in one of two ways:

Tip: Use on <task> list, or specify the ordered standard output option.

v By specifying a procedure using the procedure parameter.

In this case, the list subcommand displays lines starting a few lines before the

beginning of the specified procedure and until the list window is filled.

v By specifying a starting and ending source line number using the

sourceline-expression parameter.

The sourceline-expression parameter should consist of a valid line number

followed by an optional + (plus sign), or − (minus sign), and an integer. In

addition, a sourceline of $ (dollar sign) can be used to denote the current line

number. A sourceline of @ (at sign) can be used to denote the next line number

to be listed.

All lines from the first line number specified to the second line number specified,

inclusive, are then displayed, provided these lines fit in the list window.

If the second source line is omitted, 10 lines are printed, beginning with the line

number specified in the sourceline parameter.

If the list subcommand is used without parameters, the default number of lines is

printed, beginning with the current source line. The default is 10.

Chapter 1. Using the pdbx debugger 27

To change the number of lines to list by default, set the special debug program

variable, $listwindow, to the number of lines you want. Initially, $listwindow is set

to 10.

The syntax of this context sensitive subcommand is:

list [procedure | sourceline-expression[, sourceline-expression]]

Other key features

Some other features offered by pdbx include the following subcommands:

v help

v dhelp

v alias

v source

Also, this discussion includes information about how to specify expressions for the

print, stop, and trace commands.

Accessing help for pdbx subcommands

The help command with no arguments displays a list of pdbx commands and

topics about which detailed information is available.

If you type “help” with one of the help commands or topics as the argument,

information will be displayed about that subject.

The syntax of this context insensitive command is:

help [subject]

Accessing help for dbx subcommands

The dhelp command with no arguments displays a list of dbx commands about

which detailed information is available.

If you type “dhelp” with an argument, information will be displayed about that

command.

Note: The partition must be loaded before you can use this command, because it

invokes the dbx help command. It is also required that a task be in “debug

ready” state to process this command. After the program has finished

execution, the dhelp command is no longer available.

The syntax of this context insensitive command is:

dhelp [dbx_command]

Creating, removing, and listing command aliases

The alias subcommand specifies a command alias. You could use it to reduce the

amount of typing needed, or to create a name more easily remembered. The syntax

of this context insensitive subcommand is:

alias [alias_name [alias_string]]

28 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|
|

For example, assume that you have organized all tasks into two convenient groups

– master and workers. During the execution of a program, you need to switch the

command context back and forth between these two groups. You could save

yourself some typing by creating one alias for on workers and one for on master. At

the pdbx command prompt, you would:

ENTER alias mas on master

 alias wor on workers

Now to set the command context on the task group master, all you have to do is:

ENTER

mas

Likewise, you can now enter wor instead of on workers.

In addition to any aliases you create, there are a number of aliases supplied by

pdbx when the partition is loaded. To display the list of all existing aliases, use the

alias subcommand with no parameters. At the pdbx command prompt:

ENTER

alias

 The debugger displays a list of existing aliases. The example listing below

shows all the default aliases provided by pdbx, as well as the two aliases –

mas and wor – created in the previous example.

active tasks

c cont

ca condattr

cv condition

d delete

h help

j status

l list

m map

ma mutexattr

mt mutex

n next

p print

pa attr

pt pthread

q quit

ra rwlockattr

rw rwlock

s step

st stop

t where

th pthread

thread pthread

threads pthread

x registers

mas on masters

wor on workers

Any aliases you create are not saved between pdbx sessions. You can also

remove command aliases using the unalias subcommand. The syntax of this

context insensitive subcommand is:

unalias alias_name

For example, to remove the alias mas defined above, you would:

ENTER unalias mas

Chapter 1. Using the pdbx debugger 29

Note: You can create, remove, and list command aliases as soon as you start the

debugger. The partition does not need to be loaded.

Reading subcommands from a command file

The source subcommand enables you to read a series of subcommands from a

specified command file. The syntax of this context-insensitive subcommand is:

source command_file

The command_file should reside on the home node, and can contain any of the

subcommands that are valid on the pdbx command line. For example, say you

have a commands file named myalias which contains a number of command alias

settings. To read its commands:

ENTER source myalias

 The debugger reads the commands listed in myalias as if they had

each been entered at the command line.

Notes:

1. You can also read commands from a file when starting the debugger. This is

done using the -c flag on the pdbx command, or via a .pdbxinit file, as

described in Table 4 on page 5. The .pdbxinit file would be a great way to

automatically create your common aliases. When using a .pdbxinit file or the -c

flag, you need to keep in mind that only a limited set of commands are

supported until the partition is loaded.

2. STDIN cannot be included in a command file.

Specifying expressions

Expressions are commonly used in the print command, and when specifying

conditions for the stop or trace command.

You can specify conditions with a subset of C syntax, with some Fortran extensions.

The following operators are valid:

Arithmetic Operators

+ Addition

- Subtraction

- Negation

* Multiplication

/ Floating point division

div Integer division

mod Modulo

exp Exponentiation

Relational and Logical Operators

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

30 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

= Equal to

!= Not equal to

< > Not equal to

|| Logical OR

or Logical OR

&& Logical AND

and Logical AND

Bitwise Operators

bitand

Bitwise AND

| Bitwise OR

xor Bitwise exclusive OR

~ Bitwise complement

<< Left shift

>> Right shift

Data Access and Size Operators

[] Array element

() Array element

* Indirection or pointer dereferencing

& Address of a variable

. Member selection for structures and unions

. Member selection for pointers to structures and unions

-> Member selection for pointers to structures and unions

sizeof

Size in bytes of a variable

Miscellaneous Operators

() Operator grouping

(Type)Expression

Type cast

Type(Expression)

Type cast

Expression\Type

Type cast

Overloaded symbols

While pdbx recognizes function names, it is the combination of a function’s name

and its parameters, or the function name and the shared object it resides in, that

uniquely identify it to pdbx. When encountering ambiguous functions, pdbx issues

the Select menu, which lets the user choose the desired instance of the function.

Chapter 1. Using the pdbx debugger 31

The Select menu looks like this:

pdbx(all) stop in f1

1.ambig.f1(double)

2.ambig.f1(float)

3.ambig.f1(char)

4.ambig.f1(int)

Select one or more of [1 - 4]:

The whatis subcommand can be used to determine whether or not a function is

ambiguous. If whatis returns more than one function definition for a given symbol,

pdbx will consider it ambiguous.

There are a few restrictions for the pdbx select menu:

v All tasks in the context must have an identical view of the ambiguous function

because pdbx will only present one menu to the user that covers all tasks. As a

result, you may need to create additional groups. The view of the ambiguous

function is determined by the result of the whatis subcommand. In the example

above, whatis f1 should have returned the same result on all tasks, in order to

proceed.

v The hook subcommand will not restore the set of events generated by the Select

menu.

v The trace and print subcommands do not support ambiguous functions within

complex expressions. For example, simple expressions are always allowed:

trace myfunc

print myfunc(parm1, parm2)

but complex expressions are not allowed when a function (myfunc) is ambiguous:

trace myvar-myfunc(parm1, parm2)

print myvar*myfunc(parm1)

Exiting pdbx

It is possible to end the debug session at any time using either the quit

subcommand, or the detach subcommand if debugging in attach mode.

To end a debug session in normal mode:

ENTER

quit

 This returns you to the shell prompt.

To end a debug session in attach mode, you can choose either quit or detach.

Quitting causes the debugger and all the members of the original poe application

partition to exit. Detaching causes only the debugger to exit and leaves all the tasks

running.

ENTER

quit

 The debugger session ends, along with the poe application partition tasks.

OR

ENTER

detach

 The debugger session ends. All tasks have been detached, but stay

running.

32 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

Note: You can enter the quit and detach subcommands from either the pdbx

prompt or pdbx subset prompt.

Choosing detach causes pdbx to exit, and allows the program to which you had

attached to continue execution if it hasn’t already finished. If this program has

finished execution, and is part of a series of job steps, then detaching allows the

next job step to be executed.

If instead you want to exit the debugger and end the program, choose quit as

described above.

Chapter 1. Using the pdbx debugger 33

34 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

Chapter 2. Analyzing program performance using the PE

Benchmarker toolset

The tools and utilities of the PE Benchmarker toolset are used to collect and

analyze program event trace, hardware performance, communication count, and

OpenMP construct data. Specifically:

v The Performance Collection Tool (PCT) is used for collecting MPI traces,

hardware/operating system profiles, communication counts, and profiling data for

OpenMP constructs.

v There is a set of utilities for converting AIX trace records output by the PCT into

a format that can be analyzed within third party tools or other utilities that IBM

supplies.

v The Profile Visualization Tool (PVT) is used to analyze hardware/operating

system profiles collected by the PCT.

What is the PE Benchmarker?

The PE Benchmarker is a suite of applications and utilities that you can use to

analyze the performance of programs run within the IBM Parallel Environment for

AIX. The PE Benchmarker suite consists of:

v the Performance Collection Tool (PCT). This tool enables you to collect one of

the following types of information for one or more application processes (or

tasks):

– MPI and user event data

– hardware and operating system profiles

– communication count data

– OpenMP construct data

This tool is built on dynamic instrumentation technology, the Dynamic Probe

Class Library (DPCL). Unlike more traditional tools for collecting

message-passing and other performance information, the PCT, because it is built

on DPCL, enables you to insert and remove instrumentation probes into the

target application while the target application is running. More traditional tools

require the application to be instrumented through compilation or linking. This

often results in more instrumentation being inserted into the application than is

actually needed, and so such tools are more likely to create situations in which

the instrumented version of the application is no longer representative of the

actual, uninstrumented, version of the application. Since the PCT enables you to

make the decision of what data is collected at run time, this typically results in a

more acceptable intrusion cost of the instrumentation. What’s more, the files

output by the PCT are output on each machine running instrumented processes

rather than on a single, centralized, machine. This means that your analysis can

be efficiently scaled to collect information on a large number of processes

running on a large number of nodes.

Note: The Dynamic Probe Class Library is no longer a part of the IBM PE for

AIX licensed program. DPCL is now available as an open source offering

that supports PE. For more information on the DPCL open source project

go to the URL http://dpcl.sourceforge.net.

If you have identified a problem with the DPCL software, please report

that problem to the DPCL team by sending an email to

dpcl-user@lists.sourceforge.net describing the problem you are having.

© Copyright IBM Corp. 1993, 2006 35

|
|
|

|
|
|

|
|
|

|
|

v a set of Unified Trace Environment (UTE) utilities. When you collect MPI and

user event traces using the PCT, the collected information is saved, on each

machine running instrumented processes, as a standard AIX event trace file. The

UTE utilities enable you to convert one or more of these AIX trace files into UTE

interval files. While an AIX event trace file has a time stamp indicating the point

in time when an event occurred, UTE interval files take this information to also

determine how long an event lasts before encountering the next event. Because

they include this duration information, UTE interval files are easier to visualize

than traditional AIX event trace files.

The libTraceInput.so library, is used by the traceTOslog2 utility, available from

Argonne National Laboratory, to convert UTE interval files to the slog2 file format

used by the latest version of Jumpshot, also available from Argonne National

Laboratory. The traceTOslog2 utility can be obtained using the URL

http://www-unix.mcs.anl.gov/perfvis/download/index.htm#slog2sdk. The latest

version of Jumpshot can be obtained using the URL http://www-unix.mcs.anl.gov/
perfvis/software/viewers/index.htm#Jumpshot-4.

The UTE utilities are:

– the uteconvert utility which converts AIX event trace records into UTE interval

trace files.

– the utemerge utility which merges multiple UTE interval files into a single

UTE interval file.

– the utestats utility which generates statistics tables from UTE interval files.

– the traceTOslog2.so library which is used by the traceTOslog2 utility provided

by Argonne National Laboratory to convert UTE interval files to the SLOG2 file

format used when viewing MPI traces with the current version of Jumpshot.

– the slogmerge utility which converts and merges UTE interval files into a

single SLOG file for analysis with the previous version of Argonne National

Laboratory’s Jumpshot tool. IBM recommends that you use the traceTOslog2

utility to convert UTE interval files to SLOG2 format and that you use the

current version of Jumpshot for viewing the SLOG2 files.

v the Profile Visualization Tool (PVT). When you collect hardware and operating

system profiles, communication count data, or profiling data for OpenMP

constructs using the PCT, the collected information is saved, on each machine

running instrumented processes, as netCDF (network Common Data Form) files.

The PVT can read netCDF files and summarize the profile information in reports.

The following figure illustrates how the various tools in the PE Benchmarker toolset

work together to enable you to analyze the performance of programs run within the

IBM AIX Parallel Environment. Please note that Jumpshot is not part of the PE

Benchmarker toolset, but is instead a public domain tool developed at Argonne

National Laboratory. It is shown in the figure below, because PE Benchmarker

provides the traceTOslog2 utility for converting UTE files into the SLOG2 format

required by Jumpshot.

36 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

The preceding figure illustrates the procedure for collecting and analyzing data

using the PE Benchmarker toolset. This procedure starts with the PCT. When using

the PCT, you must select the type of data you are collecting — either MPI and user

event trace data, hardware and operating system performance data, communication

count data, or OpenMP construct profiling data. You use the PCT to connect to

existing processes, or start processes running (which also connects to the

processes). By connect to processes we mean the PCT establishes a

communication connection that enables it to control the process’ execution

(suspend, resume, and terminate the process), and also instrument the process

with data collection probes. Data files containing the collected information will be

generated on each machine running at least one instrumented process. The format

of the files generated depends on the type of data you are collecting.

Figure 2. Overview of the PE Benchmarker Toolset

Chapter 2. Analyzing program performance using the PE Benchmarker toolset 37

v If you are collecting MPI and user event trace data, standard AIX trace files will

be generated. You will first need to take the AIX trace files generated by the PCT

and convert them, using the uteconvert utility, into UTE interval files. If you want

to view statistical tables of the information contained in the UTE interval files, you

can use the utestats utility. You can optionally merge multiple UTE files into a

single UTE file using the utemerge utility before using the utestats utility to

generate the statistical tables. If you instead want to view the information

contained in the UTE interval files graphically, you can convert them into SLOG2

files which are readable by Argonne National Laboratory’s Jumpshot tool. To

convert UTE interval files into SLOG2 files, you use the traceTOslog2 utility. The

traceTOslog2 utility can convert a single UTE interval file into a single SLOG2

file, or it can convert multiple UTE interval files into a single, merged, SLOG2 file.

v If you are collecting hardware performance data, communication count data, or

OpenMP data, netCDF files will be generated. You can use the PVT to generate

graphs and reports of the information contained in the netCDF files.

Using the Performance Collection Tool

This section describes how to use the PCT’s graphical user interface or

command-line interface to collect data for a particular serial or POE program’s run.

Specifically, you can:

v connect to a running application, or (if the application you want to examine is not

already running) load an application and connect to it.

v select the type of data to collect (either MPI and user event traces, hardware and

operating system profiles, communication counts, or profiling data for OpenMP

constructs).

v start and stop execution of the target application.

v install performance collection probes into the target application to collect the

data.

v remove the performance collection probes from the target application when you

have finished collecting the performance data.

v disconnect from, or terminate, the target application processes.

For information on the tool’s graphical user interface, refer to “Using the

Performance Collection Tool’s graphical user interface.” For information on the tool’s

command-line interface, refer to “Using the Performance Collection Tool’s

command-line interface” on page 42.

Using the Performance Collection Tool’s graphical user interface

You can use the PCT’s graphical user interface to collect either MPI and user event

traces, hardware and operating system profiles, communication counts, or profiling

data for OpenMP constructs. There is a brief overview of the tasks you can perform

using the PCT’s graphical user interface, and then a description of each of these

tasks in more detail. You can also operate the PCT using its command-line

interface. For information on the tool’s command-line interface, refer to “Using the

Performance Collection Tool’s command-line interface” on page 42.

38 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|
|
|

|
|

|
|
|

|

|
|

|
|

|

|
|
|
|

|
|
|
|
|
|
|

Using the Performance Collection Tool's graphical user interface

- overview

 This is an overview of the steps you will follow when using the PCT’s graphical user

interface to collect either MPI and user event traces, hardware and operating

system profiles, communication counts, or profiling data for OpenMP constructs. To

use the PCT, you:

1. Start the PCT by using the pct command. For more information, refer to

“Starting the Performance Collection Tool” on page 41.

2. Either load and start a new application, or connect to a running application.

v To load and start a new application, use the Load Application Dialog to load

either a serial or POE application. Using the Load Application Dialog, you can

select whether you would like to merely load the application, or load the

application and start its execution. If you choose to merely load the

application, its execution will be suspended at its first executable instruction.

This enables you to install performance collection probes before later starting

application execution.

v To connect to a running application, use the Connect Application Dialog.

Using the Connect Application Dialog, you can connect to a serial or POE

application. If connecting to a POE application, you can select whether you

would like to connect to all processes in the POE application, or just the

controlling, home node, POE process. Connecting to only the controlling POE

process will enable you to later connect to select tasks in the POE

application, and may be desirable for performance reasons.

3. Select the type of data you will be collecting using the PCT. You can collect:

v MPI and user event traces for analysis using the utestats utility or a

graphical visualization tool like Jumpshot

Figure 3. The PCT main window

Chapter 2. Analyzing program performance using the PE Benchmarker toolset 39

|
|
|
|

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

v hardware and operating system profiles for analysis within the PVT

v communication count data for analysis within the PVT

v Profiling data for OpenMP constructs for analysis within the PVT.

4. If you are collecting:

MPI and user event traces

Use the Probe Selection Panel of the PCT’s main window to specify

which MPI events you want to collect data for. For example, you can

select All MPI events, Collective communication, Point-to-point

communication, and so on. In addition to specifying MPI trace data to

be collected, you can also add user markers to processes to mark

events or states of interest. Marking these states or events of interest

gives you a frame of reference when analyzing the trace record in a

graphical visualization tool like Jumpshot. You can also use user

markers to mark locations where tracing should be stopped or started.

Since you can add MPI probes only at a program, file, or function level

(meaning that the entire program, file, or function will be traced), this

gives you more control over which part of your program is traced.

Hardware and operating system profiles

 Use the Probe Selection Panel of the PCT’s main window to specify the

hardware and operating system information you want to collect for later

analysis within the PVT.

 For POWER4™ and System p5 servers, hardware events can only be

counted in predefined groupings. The POWER4 architecture supports 8

hardware counters. The IBM System p5 architecture supports only 6.

Of the 6 counters in System p5 architecture, counters 5 and 6 are

dedicated to counting the same events (PM_INST_CMPL [Instructions

Completed] and PM_RUN_CYC [Run Cycles], respectively). Thus, each

System p5 server group will count 4 distinct events. Note that for the

IBM System p5 575 (POWER5+™) servers, counter 5 also counts the

PM_RUN_INST_CMPL [Run instructions completed] event. For a list of

supported groups, please see Appendix D, “Supported IBM System p5

PMAPI hardware counter groupings,” on page 175.

Communication counts

 Note that before you use the PCT to collect communication counts for

your application, make sure you have already done the following:

v Set the MP_BYTECOUNT environment variable to link your program

with the appropriate profiling library (MPI, LAPI, or both).

v Compiled the program using the appropriate compiler script.

After setting MP_BYTECOUNT and compiling the program, you will use

the Probe Selection Panel of the PCT’s main window to specify the

communication count information you want to collect for later analysis

within the PVT.

 For more information about setting MP_BYTECOUNT and compiling

programs, see IBM Parallel Environment: Operation and Use, Volume 1.

Profiling data for OpenMP constructs

Use the Probe Selection Panel of the PCT’s main window to specify the

OpenMP constructs you want to collect for later analysis within the PVT.

40 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|

|
|
|
|

|
|

|
|
|

Note: Only functions that contain OpenMP directives or calls to the

OpenMP runtime can be instrumented. If you select a function

that has neither, you will get an error message and the function

will not be instrumented. If you select a file or program for

instrumentation, only the functions that contain OpenMP

directives or OpenMP runtime calls will be instrumented; all other

functions will be ignored.

5. When you are done collecting data, you can terminate connected processes,

disconnect from the processes, and/or exit the PCT.

In addition to the tasks summarized above, you can also:

v display the contents of source files in the View Source window.

v use a search string to locate functions within the main window’s Source Tree.

v set user preferences. Specifically, you can set the:

– search path used by the tool to locate source files for display

– size of the buffers used when creating MPI trace files

– maximum size of the MPI trace files

– types of events included in MPI trace files.

v start and stop execution of connected processes. You might, for example, wish to

suspend execution of your application prior to instrumenting it, and resume

execution after probes have been added.

v examine standard output and error from, and send standard input to, the

application using the I/O Console Window.

Starting the Performance Collection Tool

You can start the PCT in either graphical-user-interface mode or command-line

mode. For instructions on starting the PCT in command-line mode, refer to “Using

the Performance Collection Tool’s command-line interface” on page 42. To start the

PCT in graphical-user-interface mode:

1. Enter the pct command at the AIX command prompt.

$ pct

Doing this starts the PCT in graphical-user-interface mode and opens its first

window — the Welcome Dialog.

2. The Welcome Dialog provides option buttons that enable you to select whether

you would like to load a new application or connect to an existing one, as

shown in Table 11.

 Table 11. Selecting the appropriate Welcome Dialog option

If: Then:

You want to examine an application that is

not already running.

Select the Load a new application option

button and click the OK command button.

Doing this closes the Welcome Dialog, and

opens the Load Application Dialog. The Load

Application Dialog will enable you to specify

the serial or POE program you wish to run.

Chapter 2. Analyzing program performance using the PE Benchmarker toolset 41

|
|
|
|
|
|
|

|
|

|
|

|

Table 11. Selecting the appropriate Welcome Dialog option (continued)

If: Then:

You want to examine an application that is

already running.

Select the Connect to a running

application option button and click the OK

command button.

Doing this closes the Welcome Dialog, and

opens the Connect Application Dialog. The

Connect Application Dialog will enable you to

specify the serial or POE program to which

you want to connect.

You do not want to make the decision

between whether to load a new, or connect

to an existing, application at this time.

Click on the Cancel command button.

Doing this closes the Welcome Dialog and

opens the PCT’s main window. Since you

have neither loaded a new application, nor

connected to an existing application, the

main window will not provide any application

information at this time.

Accessing the Performance Collection Tool’s online help system

The PCT’s graphical user interface has been designed to be intuitive and easy to

use. If you do have any trouble using it to accomplish the tasks outlined in “Using

the Performance Collection Tool's graphical user interface - overview” on page 39,

refer to the PCT’s online help system. To access the tool’s online help, select Help

→ Contents off the main window’s menu bar, or else press the Help button that

appears on many of the PCT’s dialogs. Doing this opens the PCT help window.

If you open the help from one of the PCT’s dialogs, a help topic describing that

dialog is displayed. If you open the help from the main window, a task overview

topic is displayed.

The PCT help contains topics for each of the major tasks you can perform with the

PCT. The left hand pane of the window enables you to navigate the help system to

display the needed help topic in the right hand pane. There are three ways to

navigate the help system — using the contents tab, using the index tab, or using

the search tab:

v the contents tab is displayed by default. Simply click on any entry in the contents

tab to display the help topic.

v the index tab shows an index of the entire help system. Simply click on any entry

in the index to display its associated help topic. To search the index, type a string

in the Find field and press <enter>. The first index entry containing the string is

highlighted. Press <enter> again to search for the next occurrence of the string

in the index.

v the search tab enables you to search the help for all occurrences of a text string.

Simply type the string in the Find field and press <enter>. A list of all help topics

containing the string is displayed. The topics are listed in descending order

according to the number of occurrences of the string. The help topic with the

most occurrences of the string is displayed by default.

Using the Performance Collection Tool’s command-line interface

You can use the PCT in command-line mode to collect either MPI and user event

traces, communication counts, hardware and operating system profiles or OpenMP

constructs. Although these instructions illustrate how the various subcommands of

42 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|

the pct command can be used to instrument serial or POE programs, they do not

necessarily describe all the options of all the pct subcommands. For complete

reference information on any of the subcommands, refer to the pct command’s man

page in Appendix A, “Parallel environment tools commands,” on page 83.

While you can use the PCT in command line mode, you can also operate the PCT

using its graphical user interface. For information on how to do this, refer to “Using

the Performance Collection Tool’s graphical user interface” on page 38.

Using the Performance Collection Tool's command-line interface

- overview

To use the PCT’s command-line interface to collect either MPI and user event

traces or hardware and operating system profiles:

1. Start the PCT in command-line mode by issuing the pct command with its -c

option. You can optionally specify the -s option to instruct the PCT to read its

subcommands from a script file. For more information, refer to “Starting the

Performance Collection Tool in command-line mode” on page 45.

2. Either load and start a new application, or connect to a running application.

v To load and start a new application, use the load subcommand to load either

a serial or POE application. When you load an application, its process

execution will be suspended at its first executable instruction. To start

execution of one or more loaded application processes, issue the start

subcommand. For more information, refer to “Loading and starting a new

application” on page 48.

v To connect to a running application, use the connect subcommand. You can

connect to a serial process or a POE home node process using this

subcommand. Once connected to a POE home node process, you can issue

the connect subcommand again to connect to one or more of its individual

tasks. For more information, refer to “Connecting to a running application” on

page 49.

When you load or connect to a serial or POE application, two task groups are

created. A task group is simply a named set of tasks — in this case, the task

groups are named ″all″ and ″connected″. Task groups are intended for when

you are working with POE applications as opposed to serial applications. The all

task group represents all the tasks in the POE application, while the connected

task group represents the POE application’s connected tasks only. You can also

create your own named task groups. Task groups enable you to more easily

manipulate the tasks of a POE application, since many of the PCT’s

subcommands are designed to operate upon one or more tasks. By default, the

tasks operated upon are those in a ″current task group″ that you specify. By

default, the current task group is the automatically-created task group

connected. If you are instrumenting a serial application, you naturally do not

need to concern yourself with task groups. You should be aware, however, that

the all and connected groups are still created by the PCT. For more information

on task groups, refer to “Grouping tasks of a POE application” on page 46.

3. Select the type of data you will be collecting using the PCT. You can collect

either:

v MPI and user event traces for analysis using the utestats utility or a

graphical visualization tool like Jumpshot.

v hardware and operating system profiles for analysis within the PVT.

v communication count data for analysis within the PVT

v Profiling data for OpenMP constructs for analysis within the PVT.

Chapter 2. Analyzing program performance using the PE Benchmarker toolset 43

To specify which type of data you’ll be collecting, use the select subcommand.

For more information, refer to “Selecting the type of probe data to be collected”

on page 52.

4. Set an output location for files that are output by the PCT, and add probes to

collect data. Table 12 shows you how to set the location for the output files and

add the appropriate probes, based on whether you are collecting MPI and user

event traces, hardware and operating system profile information, communication

counts, or profiling data for OpenMP constructs.

 Table 12. Setting the location for files generated by the PCT, and adding probes

If: Then:

you are collecting

MPI and user

event traces.

1. Set the output location for the trace files that are generated by the

PCT. To do this, use the trace set subcommand. For more

information, refer to “Setting the output location and other

preferences for the AIX trace files generated” on page 54.

2. Add MPI trace probes and/or custom user markers using the trace

add subcommand. For more information, refer to “Adding MPI trace

probes to processes” on page 55 and “Adding user markers to

processes” on page 57.

When you are done collecting the trace data, you can remove the

probes using the trace remove subcommand. For more information,

refer to “Removing MPI trace probes from processes” on page 57

and “Removing user markers from processes” on page 59.

you are collecting

hardware and

operating system

profile

information.

1. Set the output location for the profile files that are generated by the

PCT. To do this, use the profile set path subcommand. For more

information, refer to “Setting the output location for the netCDF files

generated” on page 60.

2. Add the profile probes to processes using the profile add

subcommand. For more information, refer to “Adding hardware

profile probes to processes” on page 60.

When you are done collecting the profile data, you can remove the

probes using the profile remove subcommand. For more

information, refer to “Removing hardware profile probes from

processes” on page 63.

you are collecting

communication

counts.

1. Set the output location for the communication profile files that are

generated by the PCT. To do this, use the commcount set path

subcommand. For more information, refer to “Setting the output

location for the netCDF files generated” on page 63.

2. Add the communication profile probes to processes using the

commcount add subcommand. For more information, refer to

“Adding communications profile probes to processes” on page 63.

When you are done collecting the communication profile data, you

can remove the probes using the commcount remove

subcommand. For more information, refer to “Removing

communications profile probes from processes” on page 66.

44 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|
|
|
|

|

Table 12. Setting the location for files generated by the PCT, and adding probes (continued)

If: Then:

you are collecting

profiling data for

OpenMP

constructs.

1. Set the output location for the openmp files that are generated by

the PCT. To do this, use the openmp set path subcommand. For

more information, refer to “Setting the output location for the netCDF

files generated” on page 66.

2. Add the openmp probes to processes using the openmp add

subcommand. For more information, refer to “Adding OpenMP

profiling probes to processes” on page 66.

When you are done collecting the openmp data, you can remove the

probes using the openmp remove subcommand. For more

information, refer to “Removing OpenMP profile probes from

processes” on page 69.

5. When you are done collecting data, you can terminate connected processes

using the destroy subcommand, or disconnect from the processes using the

disconnect subcommand. To exit the PCT, issue the exit subcommand. For

more information, refer to “Terminating connected processes” on page 69,

“Disconnecting from the application” on page 70, and “Exiting the Performance

Collection Tool” on page 71.

In addition to the tasks summarized above, you can also:

v suspend and resume execution of connected processes by issuing the suspend

and resume subcommands. You might, for example, wish to suspend execution

of your application prior to instrumenting it, and resume execution after the

probes have been added. For more information, refer to “Suspending and

resuming application execution” on page 49.

v send standard input text to your application using the stdin subcommand. For

more information, refer to “Sending standard input text to the application” on

page 50.

v Display the contents of source files using the list subcommand. For more

information, refer to “Displaying the contents of a source file” on page 51.

Starting the Performance Collection Tool in command-line mode

To start the PCT in command-line mode, enter, at the AIX command prompt, the

pct command with its -c option:

pct -c

The PCT displays the pct> command prompt. You can now enter PCT

subcommands at this prompt.

When starting the PCT in command-line mode, you can optionally specify the -s

option to instruct the PCT to read subcommands from a particular script file of PCT

subcommands. For example, to have the PCT read the subcommands in the script

file myscript.cmd:

pct -c -s myscript.cmd

For more information on PCT script files, refer to “Creating and Running PCT script

files” on page 71.

The first thing you’ll want to do after starting the PCT is either connect to a running

application, or load and connect to a new application. If the application you wish to

examine is already running, you can connect to it; refer to “Connecting to a running

application” on page 49. If the application you wish to examine is not already

running, you can load it; refer to “Loading and starting a new application” on page

48

Chapter 2. Analyzing program performance using the PE Benchmarker toolset 45

|

48. If you are going to connect or load a POE application, you need to understand

the concept of task groups; refer to “Grouping tasks of a POE application.”

Getting help on the PCT’s command-line interface

To get a listing of all of the PCT’s subcommands, enter the help subcommand at

the pct> prompt.

pct> help

To get the syntax of a particular subcommand, enter the help subcommand

followed by the name of the subcommand whose syntax you want displayed. For

example, to get the syntax of the load subcommand.

pct> help load

Grouping tasks of a POE application

In the Parallel Operating Environment, the multiple cooperating processes of your

program are referred to as ″tasks″. Many of the PCT subcommands are designed to

operate on one or more tasks of a POE application. By default, the tasks operated

upon are those in a ″current task group″ that you can specify. A task group is simply

a named set of tasks. Two such task groups — all and connected — are created

automatically when you either connect to a running application (using the connect

subcommand), or load a new application (using the load subcommand). The all

task group represents all the tasks in the POE application. The connected task

group is the current task group by default — it represents the POE application’s

connected tasks only. You can also create your own task groups.

By default, the current task group will be connected; the subcommands you issue

will act upon all connected tasks in the POE application. You can change the

current task group to be the automatically created group all, or a task group that

you have created. You can also, for all of the subcommands that act upon task

groups, specify a set of tasks or a task group when issuing the subcommand. If you

do this, the subcommand will operate on the tasks specified rather than the current

task group. For example, consider the suspend subcommand for suspending

execution of one or more tasks. If you issue this subcommand without options as in:

pct> suspend

The tasks in the current task group are suspended. However, if you specify a task

list using the task clause, you suspend execution for the tasks specified — in this

next example tasks 0 through 5:

pct> suspend task 0:5

Note: When using the task clause, the tasks in the POE application can be

specified by listing individual values separated by commas (1,3,8,9), by

giving a range of tasks using a colon to separate the ends of the range

(12:15 refers to tasks 12, 13, 14, and 15), by giving a range and increment

value using colons to separate the range and increment values (20:26:2

refers to tasks 20, 22, 24, and 26), or by using a combination of these

(12:18,22,30).

You can also specify a named task group (other than the current task group) using

the group clause:

pct> suspend group workers

To understand why you might want to specify a task group, consider the following

example. Say that the application you’re examining follows the master/workers

46 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

model in which one task (the ″master″) coordinates the activities of all the other

tasks — the ″workers″. You could create two task groups — one containing just the

master task, and the other containing all the other tasks. To do this, you would use

the group subcommand with its add clause. To create a task group master

containing just task 0:

pct> group add master 0

To create a task group workers containing the tasks 1 through 10:

pct> group add workers 1:10

Once these groups are created, you can make either one the current task group. To

do this, you would use the group subcommand with its default clause. For

example, the following subcommand sets the current task group to be the task

group master:

pct> group default master

While master is the current task group, any subcommands that operate upon tasks

will operate only upon task 0 — the only task in the group master. To make the

group workers the current task group:

pct> group default workers

While you cannot modify or delete the two groups that the PCT automatically

creates (all and connected), you can modify and delete the groups that you have

created. To add tasks 11 though 20 to the task group workers:

pct> group add workers 11:20

To delete task 11 from the task group workers:

pct> group delete workers 11

To delete the entire task group workers:

pct> group delete workers

Notes:

1. If you are instrumenting a serial application, you naturally do not need to

concern yourself with task groups. You should be aware, however, that the all

and connected groups are still created by the PCT.

2. You can list the existing task groups, or the members of a particular task group,

using the show subcommand. For example, the following subcommand lists the

existing task groups:

pct> show groups

Default Group Name

------- ----------

 all

@ connected

pct>

The @ symbol indicates which group is the current task group.

To list the tasks in the task group all:

pct> show group all

Tid Program Name Host Cpu Type State

--- ------------------------ ---------------- -------- ------

0 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded

1 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded

2 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded

3 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded

pct>

Chapter 2. Analyzing program performance using the PE Benchmarker toolset 47

Loading and starting a new application

If the serial or POE application you wish to examine is not already running, you can

load it onto one or more nodes. When you load an application using the load

subcommand, it is loaded in a stopped state with execution suspended at the first

executable instruction. You can then start its execution using the start

subcommand.

To load a serial application, you simply supply the load subcommand with the path

to the executable. The exec clause indicates the path to the executable. If the

application takes arguments, you can specify them using the args clause. For

example:

pct> load exec /u/example/bin/foo args "a b c"

If loading a POE application, you specify the poe clause, and can also supply any

POE arguments using the poeargs clause. For information on the POE

command-line flags available to you, refer to the manual IBM Parallel Environment:

Operation and Use, Volume 1.

The procedure for loading a POE application differs depending on whether the

application follows the Single Program Multiple Data (SPMD) or Multiple Program

Multiple Data (MPMD) model. If your program follows the SPMD model, you specify

the path to the executable using the exec clause:

pct> load poe exec /u/example/bin/parallel_foo poeargs \

"-procs 4 -hfile /tmp/host.list"

If your program follows the MPMD model, you supply the path to a POE commands

file (which lists the individual programs to load) using the mpmdcmd clause:

pct> load poe mpmdcmd \

/u/example/bin/foo.cmds poeargs "-procs 3 -hfile /tmp/host.list"

For information on creating a POE commands file for loading multiple programs,

refer to the manual IBM Parallel Environment: Operation and Use, Volume 1.

The load subcommand also enables you to specify that standard input, standard

output, or standard error should be redirected. To read standard input from a file,

use the stdin clause:

pct> load exec /u/example/bin/foo args "a b c" stdin input_file

To redirect standard output to a file, use the stdout clause:

pct> load exec /u/example/bin/foo args "a b c" stdout output_file

To redirect standard error to a file, use the stderr clause:

pct> load exec /u/example/bin/foo args "a b c" stderr error_file

When you load an application, two task groups — all and connected — are

automatically created, and connected is made the current task group. Task groups

are important to know about only if you are working with a POE application and are

described in “Grouping tasks of a POE application” on page 46. Also note that the

application is loaded in a stopped state with execution suspended at the first

executable instruction. To start execution of the application, use the start

subcommand:

pct> start

48 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

Connecting to a running application

If the serial or POE application you wish to examine is already running, you can

connect to it using the connect subcommand. To list the processes to which you

can connect, use the show subcommand with its ps clause:

pct> show ps

Pid Command

----- ---

10652 /home/strofino/dpcltest/WORK/prod_cons

13256 /etc/dpcld /tmp/dpclsd

13316 /home/strofino/dpcltest/WORK/prod_cons

14302 /usr/lpp/ppe.dpcl/dpcl_beta/bin/poe

18108 /home/strofino/dpcltest/WORK/prod_cons

20614 /u/alfeng/public/perf/seqsleep

21996 /u/alfeng/bin/sesmgr

22644 /home/strofino/dpcltest/WORK/prod_cons

22802 java com/ibm/ppe/perf/main/Startup -l /u/alfeng/bin/sesmgr -cmd

23236 -ksh

24894 /etc/dpcld /tmp/dpclsd

27632 -ksh

pct>

If you are connecting to a serial application, you simply supply the process ID of the

process you wish to connect to using the pid clause of the connect subcommand.

pct> connect pid 12345

If you are connecting to a POE application, you connect to the processes in two

steps. First, you issue the connect subcommand to connect to the controlling,

home node, POE process. Once connected to the controlling POE process, you can

then reissue the connect subcommand to connect to any of its processes. For

example, to connect to the application whose AIX process ID is 12345:

pct> connect poe pid 12345

When you connect to the POE home node process, the PCT creates two task

groups — all and connected. The all task group refers to all of the tasks in the

application, while the connected task group refers only to connected tasks. The

connected task group will initially be empty since no tasks are connected. You can

list the existing task groups by issuing the show subcommand with its groups

clause:

pct> show groups

Default Group Name

------- ----------

 all

@ connected

pct>

To connect to all tasks in the POE application:

pct> connect group all

To connect to select tasks in the POE application, use the task clause:

pct> connect task 2,3

Suspending and resuming application execution

The PCT enables you to suspend and resume execution of connected processes by

issuing the suspend and resume subcommands. You might, for example, wish to

suspend execution of your target application prior to instrumenting it as described in

“Collecting MPI trace and custom user marker information” on page 53. Once your

performance collection probes have been added to the application, you could

resume the application’s execution. By default, the suspend and resume

Chapter 2. Analyzing program performance using the PE Benchmarker toolset 49

subcommands act upon the current task group. Unless you have specified another

task group to be the current task group, the current task group will be the task

group connected. The task group connected is created automatically by the PCT

when you either connect to or load an application (as described in “Connecting to a

running application” on page 49 and “Loading and starting a new application” on

page 48). The task group connected consists of all connected tasks in a POE

application. If you are instrumenting a serial application, you do not need to concern

yourself with task groups. If you are instrumenting a POE application, however, it is

useful to understand the concept of task groups as described in “Grouping tasks of

a POE application” on page 46.

To suspend execution of the tasks in the current task group:

pct> suspend

To suspend execution of tasks in a specific task group (in this case, the task group

connected), use the group clause on the suspend subcommand:

pct> suspend group connected

To suspend a specific set of tasks in a POE application, use the task clause on the

suspend subcommand. To determine how many tasks are available, you can use

the show group subcommand to list the tasks in the task group all:

pct> show group all

Tid Program Name Host Cpu Type State

--- ------------------------ ---------------- -------- ------

0 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded

1 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded

2 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded

3 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded

pct> suspend task 1,3

The resume subcommand works in the same way. By default, it operates on the

current task group:

pct> resume

But you can override this by specifying a task group:

pct> resume group connected

or supplying a task list:

pct> resume task 1,5

Sending standard input text to the application

If you have loaded an application (as described in “Loading and starting a new

application” on page 48), you can use the stdin subcommand to send standard

input text to your application. However, if you have instead merely connected to an

application (as described in “Connecting to a running application” on page 49), you

cannot send standard input text to the application using the stdin subcommand.

If you are instrumenting a serial application, the standard input text will be sent to

that application process. If you are instrumenting a POE application, the standard

input text will be sent to the controlling, ″home node″, POE process. As described

in “Loading and starting a new application” on page 48, you can, when loading an

application using the load subcommand, specify that standard input should be read

from a file. If you are reading standard input from a file, you cannot use the stdin

subcommand.

50 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

To send a standard input string to the application, specify the string on the stdin

subcommand. The string must be enclosed in double quotes:

> stdin "Now is the time for all good men"

If desired, you can use embedded formatting characters (such as \n) in your

standard input string:

> stdin "Now is the time \nfor all good men"

To send a newline character to the input stream reading this input data, issue the

stdin command without any text string:

stdin

To send an end-of-file character to the input stream reading this input data, use the

eof clause on the stdin subcommand:

> stdin eof

Displaying the contents of a source file

Using the list subcommand, you can display the contents of source files. Unless

you are certain of the file name of the source file you want to examine, you may

want to list the available source files using the file subcommand. The file

subcommand lists, for one or more connected tasks, the associated source file

names that match a regular expression you supply. By default, the file

subcommand acts upon the current task group. Unless you have specified another

task group to be the current task group (as described in “Grouping tasks of a POE

application” on page 46), the current task group will be the task group connected.

The task group connected is created automatically by the PCT when you either

connect to or load an application (as described in “Connecting to a running

application” on page 49 and “Loading and starting a new application” on page 48).

The task group connected consists of all connected tasks in a POE application. If

you are instrumenting a serial application, you do not need to concern yourself with

task groups. If you are instrumenting a POE application, however, it is useful to

understand the concept of task groups as described in “Grouping tasks of a POE

application” on page 46.

You supply the file subcommand with an AIX regular expression file-matching

pattern (enclosed in double quotation marks) to match the source files you want to

list. For example, to list all the available source files in the current task group:

pct> file "*"

Tid File Id File Name Path

--- ------- --------- -------------

0 0 bar.c ../../lib/src

0 1 foo1.c ../../lib/src

0 2 foo2.c ../src

pct>

Although this subcommand, by default, acts upon the current task group, you can

specify that it should instead act upon a different task group, or all the tasks in a

task list that you supply. This is done by using the task or group clause on the file

subcommand. For more information on the task and group clauses, refer to

“Grouping tasks of a POE application” on page 46.

After issuing the file subcommand, you’ll have both the file name and the file

identifier of the source file(s) you want to examine. Now you can use the list

subcommand to display the contents of one or more files. Like the file

Chapter 2. Analyzing program performance using the PE Benchmarker toolset 51

subcommand, the list subcommand will, by default, act upon the current task

group. Using either the file or fileid clause of the list subcommand, you indicate

the file(s) whose contents you want listed.

When listing the contents of files using the list subcommand, the PCT uses a

special source path to locate the source files. This source path is, by default, the

directory in which the PCT was started, and can be displayed using the sourcepath

clause on the show subcommand as in:

pct> show sourcepath

Path

./

pct>

To modify the source path so that the PCT can locate source files that are not

located in the directory in which the tool was started, use the set subcommand. As

with setting your AIX PATH environment variable, you separate the various

directories in your source path using colons. For example:

pct> set sourcepath "/afs/aix/u/jbrady:/afs/aix/u/dlecker"

Using the file clause, you supply the list subcommand with an AIX regular

expression file-matching pattern (enclosed in double quotation marks) to match the

source file(s) whose contents you want to list. If desired, you can supply additional

regular expressions separated by commas (file "f*","b*"). For example, the

following subcommand lists the contents of the file bar.c:

pct> list file "bar.c"

While this subcommand lists the contents of the first file found in the application

that begins with the letter ″f″:

pct> list file "f*"

Using the fileid clause, you identify the file whose contents you want to list using

the process identifier(s) returned by the file subcommand. For example, the

following subcommand lists the contents of the file bar.c (whose file identifier is 0):

pct> list fileid 0

You can also use the line clause of the list subcommand to list only a portion of the

file’s contents. Use a colon to separate the ends of the line number range. For

example, the following subcommand lists lines 1 through 20 of the file bar.c.

pct> list file "bar.c" line 1:20

To list the next few lines in bar.c, simply specify the next clause on the list

subcommand.

pct> list next

Selecting the type of probe data to be collected

The PCT is capable of collecting four different types of information. It can collect:

v MPI and user event traces for analysis using the utestats utility or a graphical

visualization tool like Jumpshot (a public domain tool developed at Argonne

National Lab). For more information on the utestats utility, as well as utilities for

converting the AIX trace files created by the PCT into a format readable by

utestats and Jumpshot, refer to “Creating, converting, and viewing information

contained in UTE interval files” on page 72.

v Hardware and operating system profiles for analysis within the PVT. For more

information on the PVT, refer to “Using the Profile Visualization Tool” on page 76.

52 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

v Communication count data for analysis within the PVT. For more information on

the PVT, refer to “Using the Profile Visualization Tool” on page 76.

v Profiling data for OpenMP constructs for analysis within the PVT. For more

information on the PVT, refer to “Using the Profile Visualization Tool” on page 76.

Be aware that, before you can collect any type of information, you must specify,

using the select subcommand, the type in which you are interested. Table 13

shows you how to specify the type of information you want to collect using the

select subcommand.

 Table 13. Specifying the type of information you want to collect

If you want to collect: Then:

MPI and user event traces Specify the trace clause on the select

subcommand:

select trace

Hardware and operating system profiles Specify the profile clause on the select

subcommand:

select profile

Communication counts Specify the commcount clause on the select

subcommand:

 select commcount

Profiling OpenMP constructs Specify the openmp clause on the select

subcommand:,

select openmp

Note: You can select the type of data to collect only once per load and connect.

Collecting MPI trace and custom user marker information

-

Using the PCT, you can collect MPI and user event traces for:

v analysis using the utestats utility

v eventual analysis within a graphical visualization tool like Jumpshot

The trace information collected is stored as an AIX trace file on each node running

instrumented processes. After you have generated these AIX trace files, you can

convert them into the Unified Trace Environment (UTE) format (using the

uteconvert utility) for analysis using the utestats utility. You can then also convert

the UTE files into the SLOG2 format (using the traceTOslog2 utility) for analysis

within Jumpshot. For more information on the utilities for converting the AIX trace

files output by the PCT into formats readable by the utestats utility and Jumpshot,

refer to “Creating, converting, and viewing information contained in UTE interval

files” on page 72.

In order to collect MPI trace information, the application to be traced must be linked

with the libute_r.a library. To cause this UTE library to be added to the link step, set

the MP_UTE environment variable to yes.

Before you can use any of the MPI trace collection subcommands, you must first

specify that you are collecting MPI trace information rather than hardware profile

information. Refer to “Selecting the type of probe data to be collected” on page 52

for more information. Once you have indicated that you’ll be collecting MPI and/or

user event traces, you can select the output location for the trace files generated by

Chapter 2. Analyzing program performance using the PE Benchmarker toolset 53

|
|
|

|

|
|
|
|
|

the PCT. To do this, you simply supply an output directory and ″base name″ (file

prefix) for the trace files. Refer to “Setting the output location and other preferences

for the AIX trace files generated” for more information. You can collect information

about:

v standard MPI messaging events such as collective communication, point-to-point

communication, or one-sided communication. This is done by adding MPI data

collecting probes to one or more application tasks. Refer to “Adding MPI trace

probes to processes” on page 55 for more information.

v events of interest (such as program function calls). This is done by installing a

simple user marker into one or more application task at an instrumentation point

in the code. Instrumentation points are locations in the code (such as function

call sites) where it is safe to install probes. A simple marker will appear in the

trace record as a single point; its position gives you a frame of reference when

analyzing a trace record in a graphical visualization tool like Jumpshot.

v states of interest. This is done by installing beginning and ending state user

markers in the code at particular instrumentation points. A state will appear in the

trace record as a region and, like the simple markers, gives you a frame of

reference when analyzing a trace record in a graphical visualization tool like

Jumpshot.

Setting the output location and other preferences for the AIX trace files

generated: The trace information collected by the PCT is stored as a separate

AIX trace file on each node running instrumented processes. You can select the

output location and other preferences for the trace files using the trace set

subcommand, as shown in Table 14.

 Table 14. Setting the output location and other preferences for the AIX trace files

To specify: Use this clause of

the trace set

subcommand:

For example:

The output location and a

″base name″ prefix for the

generated files.

path pct> trace set path "/home/timf/trace

files/mytrace"

Specifies /home/timf/tracefiles as the

location for the generated files. The

basename prefix is mytrace.

The AIX trace buffer size in

Kilobytes. This value can

be at most 1024, which is

the default.

bufsize pct> trace set bufsize 1000

The type of events (MPI

events, process dispatch

events, and CPU idle

events) that are traced. By

default, MPI and process

dispatch events are traced.

Tracing process dispatch

events and CPU idle

events can result in larger

trace files, but the

additional information can

provide useful context for

the MPI information

collected.

event pct> trace set event mpi

pct> trace set event process

pct> trace set event idle

54 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

Table 14. Setting the output location and other preferences for the AIX trace

files (continued)

To specify: Use this clause of

the trace set

subcommand:

For example:

The maximum trace file

size in Megabytes. This

can be any value between

2 and 2048 inclusive. The

default is 20.

logsize pct> trace set logsize 25

Adding MPI trace probes to processes: By adding MPI trace probes to

processes, you can trace such MPI events as collective communication,

point-to-point communication, and one-sided communication.

To add MPI trace probes, you’ll need to know the specific MPI probe type identifier

or name as returned by the trace show subcommand. To list the available MPI

probe type identifiers and names, specify the probetypes clause on the trace

show subcommand:

pct> trace show probetypes

MPI Id MPI Name Description

------ ----------- --------------------------------------

0 all all MPI events

1 blkcollcomm blocking collective communication

2 pttopt point-to-point communication

3 onesided one-sided communication

4 commgroup communication groups

5 topo topologies

6 collcomm non-blocking collective communications

7 env environmental

8 data data type

9 file file

10 info information

11 comm communicators

12 wait wait calls

13 test test calls

pct>

Once you have the probe type information, you can use the trace add

subcommand to add one or more probe types to one or more processes. You can

add the probes at the file level, in which case the MPI events for the entire file will

be traced, or at the function level. If that granularity is not small enough, and you

want to trace only a portion of a function, you can use special markers to force

tracing on and off at particular points.

By default, the trace add subcommand acts upon the current task group. Unless

you have specified another task group to be the current task group (as described in

“Grouping tasks of a POE application” on page 46), the current task group will be

the task group connected. The task group connected is created automatically by the

PCT when you either connect to or load an application (as described in “Connecting

to a running application” on page 49 and “Loading and starting a new application”

on page 48). The task group connected consists of all connected tasks in a POE

application. If you are instrumenting a serial application, you do not need to concern

yourself with task groups. If you are instrumenting a POE application, however, it is

useful to understand the concept of task groups as described in “Grouping tasks of

a POE application” on page 46.

Chapter 2. Analyzing program performance using the PE Benchmarker toolset 55

|
|

Note: The set of tasks in which you will add the probes cannot include different

executables in an MPMD application. For example, if an MPMD application

consists of executables a.out and b.out, then this command cannot be

applied to a task group that contains both a.out and b.out tasks.

If you are tracing at the file level, you’ll need to specify the files using either the file

or fileid clause on the trace add subcommand. To do this, you’ll need the file

identifier or file name information as returned by the file subcommand. To list all

available source files in the current task group:

pct> file "*"

Tid File Id File Name Path

--- ------- --------- -------------

0 0 bar.c ../../lib/src

0 1 foo1.c ../../lib/src

0 2 foo2.c ../src

pct>

To add a certain type of MPI probe, you supply the trace add subcommand with

the MPI probe type and file information. You can specify the MPI probe type by

supplying the:

v MPI probe type identifier using the mpiid clause

v MPI probe type name using the mpiname clause

Similarly, you can specify the file information by supplying the:

v file identifier using the fileid clause

v file name using the file clause and a regular expression

For example:

pct> trace add mpiid 0 to fileid 0

pct> trace add mpiname all to file "bar.c"

You can also specify multiple MPI probe types or multiple files:

pct> trace add mpiid 1,2 to fileid 0,1

pct> trace add mpiname collcom,pttopt to file "bar.c","f*"

If you would like to trace at a function level rather than tracing an entire file, you

need to specify the function(s) using either the function or funcid clause. You’ll

need the function identifier or function name information as returned by the

function subcommand. To list all functions in the file bar.c:

pct> function file "bar.c" "*"

Tid File Id Function Id File Name Function Name

--- ------- ----------- --------- -------------

0 1 0 bar.c func0

0 1 1 bar.c func1

pct>

Note:

If you wish to instrument a particular function, but do not know which file the

function is located in, you can use the find subcommand. For example, to

search all files in task 0 for functions that match the regular expression

comp*:

56 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

pct> find task 0 function "comp*"

Tid File Id File Name Function Name

--- ------- --------- -------------

0 23 main.c compute

0 23 main.c compare

0 25 sort.c compare2

pct>

You can then specify the function on the trace add subcommand:

pct> trace add mpiid 0 to file "bar.c" function "func0"

You can also specify multiple functions:

pct> trace add mpiid 0 to file "bar.c" function "*"

pct> trace add mpiid 0 to file "bar.c" function "func0","func1"

If you would like to trace at the block level, rather than an entire file or function, you

need to use the block or blockid clause with the trace add subcommand. For

more information about using the block and blockid clauses, see “trace add

subcommand (of the pct command)” on page 117.

Removing MPI trace probes from processes: When you issue the trace add

subcommand to install MPI trace probes, the probes are given a unique probe

identifier. You can use the probe identifier on the trace remove subcommand to

remove the probes. To ascertain the probe identifier, use the trace show

subcommand with its probes clause as in:

pct> trace show probes

Probe Id Command

-------- --

0 trace add mpiid 0 to file "prod_cons.c" function "alarm_handler"

1 trace add mpiid 0 to file "prod_cons.c" function "consume"

pct>

To remove the probe set whose probe identifier is 0:

pct> trace remove probe 0

Adding user markers to processes: User markers are special types of probes

that you can install at specific instrumentation points in your application code. You

can:

v Mark events of interest (such as program function calls) using a simple marker. A

simple marker will appear in the trace record as a single point; its position gives

you a frame of reference when analyzing the trace record in a graphical

visualization tool like Jumpshot.

v Mark a state of interest using a begin state marker and an end state marker. A

state marked by begin and end state markers will appear in the trace record as a

region. Like the simple markers, this gives you a frame of reference when

analyzing the trace record in a graphical visualization tool like Jumpshot.

v Force tracing on or off using a trace on marker or a trace off marker.

To install a user marker, you’ll need to identify not only the file and function, but

also the instrumentation point at which you want the probe installed. To list

instrumentation points, issue the point subcommand.

pct> point task 0 file "bar.c"

Tid File Id Function Id Point Id Point Type Callee Name Line Number

--- ------- ----------- -------- ---------- ----------- -----------

Chapter 2. Analyzing program performance using the PE Benchmarker toolset 57

0 54 0 0 0 61

0 54 0 1 2 printf 61

0 54 0 2 3 printf 61

0 54 0 3 2 MPI_Abort 62

0 54 0 4 3 MPI_Abort 62

0 54 0 5 1 63

0 54 1 0 0 114

0 54 1 1 2 printf 116

0 54 1 2 3 printf 116

0 54 1 3 2 printf 117

0 54 1 4 3 printf 117

0 54 1 5 2 MPI_Recv 120

0 54 1 6 3 MPI_Recv 120

0 54 1 7 2 consume_data 122

0 54 1 8 3 consume_data 122

0 54 1 9 2 printf 126

0 54 1 10 3 printf 126

0 54 1 11 1 130

pct>

To understand the point type number returned by the point command, issue the

show points command.

pct> show points

Point Type Point Name

---------- ----------

0 function entry

1 function exit

2 before callsite

3 after callsite

4 block entry

5 block exit

pct>

Table 15 describes how to add user markers to your code.

 Table 15. Adding user markers

To: Use: For example:

mark a

state of

interest.

the simplemarker clause on the trace add subcommand. pct> trace add simplemarker "simple"

to file "bar.c" funcid 0 pointid 0

58 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|

|

Table 15. Adding user markers (continued)

To: Use: For example:

mark a

region

the beginmarker and endmarker clauses on the trace

add subcommand. You must mark the beginning and end

of the range with the same ″marker name″ (a string that

will be used to identify the user state in the trace record).

You can only use a particular name for one begin

marker/end marker pair. The state will appear in the trace

record as a region.

You should place all markers after the target application’s

call to MPI_init (which initializes MPI), and before the call

to MPI_Finalize (which terminates MPI processing). For

more information in the MPI_init and MPI_Finalize calls,

refer to the IBM Parallel Environment: MPI Programming

Guide or the IBM Parallel Environment: MPI Subroutine

Reference.

When marking a region, you must ensure that the begin

and end state markers are placed so that if either marker is

reached during execution, the other marker will also be

reached. If you nest region markers, you must also ensure

that the regions are properly nested. In other words, the

inner region should be fully enclosed by the outer region. If

you do not follow these guidelines, and the begin and end

state markers are not correctly nested, you will get an error

when you run the uteconvert utility. For more information

on the uteconvert utility, refer to “Creating, converting, and

viewing information contained in UTE interval files” on page

72.

pct> trace add beginmarker "green" to

 file "bar.c" funcid 1 pointid 0

pct> trace add endmarker "green" to

file "bar.c" funcid 1 pointid 1

force tracing

on or off

the traceon or traceoff clause on the trace add

subcommand.

pct> trace add traceoff to file

"bar.c" funcid 0 pointid 0

pct> trace add traceon to file

"bar.c" funcid 0 pointid 1

Removing user markers from processes: When you issue the trace add

subcommand to install a custom user marker, the marker is given a unique marker

identifier. You can use this marker identifier on the trace remove subcommand to

remove the markers. To ascertain the marker identifier, use the trace show

subcommand with its markers clause as in:

pct> trace show markers

Marker Id Command

--------- -------

0 trace add simplemarker "simple" to file "bar.c" funcid 0 pointid 0

1 trace add beginmarker "green" to file "bar.c" funcid 1 pointid 0

2 trace add endmarker "green" to file "bar.c" funcid 1 pointid 1

pct>

To remove the marker whose identifier is 2:

> trace remove marker 2

Collecting hardware and operating system profile information

Using the PCT, you can collect hardware and operating system profiles for analysis

within the PVT.

Chapter 2. Analyzing program performance using the PE Benchmarker toolset 59

|

The profile information collected is stored in netCDF (network Common Data Form)

format on each node running instrumented processes. The PVT can read netCDF

files and summarize the profile information in reports. For more information on using

the PVT to read netCDF files output by the PCT, refer to “Using the Profile

Visualization Tool” on page 76.

Before you can use any of the profile collection subcommands, you must first

specify that you are collecting hardware profile information rather than MPI and user

event traces. Refer to “Selecting the type of probe data to be collected” on page 52

for more information. Once you have indicated that you’ll be collecting hardware

profile information, you can select the output location for the netCDF files generated

by the PCT. To do this, you simply supply an output directory and ″base name″ (file

prefix) for the netCDF files. Refer to “Setting the output location for the netCDF files

generated” for more information.

Setting the output location for the netCDF files generated: The hardware

profile information is saved as a separate netCDF file on each node running

instrumented processes. Using the profile set path subcommand, you can specify

the output location and ″base name″ file prefix for these files. For example:

pct> profile set path "profile/output"

Adding hardware profile probes to processes: By adding hardware profile

probes to processes, you can collect hardware and operating system information

such as elapsed wall-clock time, process resource usage, and hardware counters.

To add hardware profile probes, you need to know the specific probe type identifier

or name as returned by the profile show subcommand. To list available probe type

identifiers and names, specify the probetypes clause on the profile show

subcommand.

For example:

pct> profile show probetypes

Prof Id Prof Name Description

------- --------- ----------------

0 wclock wall clock

1 rusage resource usage

2 hwcount hardware counter

pct>

For hardware counters, you can also display a list of the specific hardware counter

information you can collect. The list of available hardware counter groups will differ

depending on whether the current or supplied task group:

v has tasks running only on 604e CPUs

v has tasks running only on 630 CPUs

If the current or supplied task group has tasks running on mixed CPUs, then no

hardware counters are available, and so none will be listed.

To list available hardware counter groups, specify the probetype hwcount clauses

on the profile show subcommand:

pct> profile show probetype hwcount

Prof Type Name Description

--------- ------- ---------------------------------

0 FPU FPU, FXU, and LSU operations

1 Branch Branch operations

2 L1_TLB L1 cache and TLB operations

60 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|
|
|
|
|
|
|
|

3 L2 Prefetch and L2 cache operations

4 Fpop Floating-point operations

5 xFPU FPU, FXU, LSU, and BPU operations

pct>

The hardware counter groups you see listed are, by default, the hardware counter

groups we have created.

Once you have the probe type and hardware counter information, you can use the

profile add subcommand to add one or more probe types to one or more

processes. You can add the probes at the file level, in which case profile

information for the entire file will be produced, or at the function level.

By default, the profile add subcommand acts upon the current task group. Unless

you have specified another task group to be the current task group (as described in

“Grouping tasks of a POE application” on page 46), the current task group will be

the task group connected. The task group connected is created automatically by the

PCT when you either connect to or load an application (as described in “Connecting

to a running application” on page 49 and “Loading and starting a new application”

on page 48). The task group connected consists of all connected tasks in a POE

application. If you are instrumenting a serial application, you do not need to concern

yourself with task groups. If you are instrumenting a POE application, however, it is

useful to understand the concept of task groups as described in “Grouping tasks of

a POE application” on page 46.

Note: The set of tasks in which you will add the probes cannot include different

executables in an MPMD application. For example, if an MPMD application

consists of executables a.out and b.out, then this command cannot be

applied to a task group that contains both a.out and b.out tasks.

If you are collecting profile information at the file level, you’ll need to specify the

files using either the file or fileid clause on the profile add subcommand. To do

this, you’ll need the file identifier or file name information as returned by the file

subcommand. To list all available source files in the current task group:

pct> file "*"

Tid File Id File Name Path

--- ------- --------- -------------

0 0 bar.c ../../lib/src

0 1 foo1.c ../../lib/src

0 2 foo2.c ../src

pct>

The profile set mode subcommand sets the mode specifying whether a probe

reports its data in terms of pthread ids or openmp thread ids. The default is to

report data in terms of pthread ids, even when the instrumentation point is within an

OpenMP parallel region. If profile set mode pthread is issued, then all probes,

even those within an OpenMP region, will report their data in terms of pthread id. If

the command profile set mode openmp is issued, then an instrumentation point

within an OpenMP parallel region will report its data in terms of the OpenMP thread

id, and instrumentation points outside of OpenMP parallel regions will report their

data in terms of pthread id. This command must be issued before the first profile

probe is added.

To add a certain type of profile probe, you can supply the profile add subcommand

with the profile probe type and option information, as well as the file information.

You can specify:

v the profile probe type by supplying the:

Chapter 2. Analyzing program performance using the PE Benchmarker toolset 61

– profile probe type identifier using the profid clause

– profile probe type name using the profname clause

v the hardware profile group using the groupid or groupname clause

v the file information by suppling the:

– file identifier using the fileid clause

– file name using the file clause and a regular expression

For example:

pct> profile add profname wclock to fileid 0

pct> profile add profid 0 to file "bar.c"

pct> profile add profname hwcount groupid 2 to fileid 3

You can also specify multiple profile probe types or multiple files:

pct> profile add profname wclock profname hwcount groupid 2 to fileid 3,4

If you would like to collect profile information at the function level (instead of

collecting profile information for an entire file), you’ll need to specify the function(s)

using either the function or funcid clause. You’ll need the function identifier or

function name information as returned by the function subcommand. To list all the

functions in the file bar.c:

pct> function file "bar.c" "*"

Tid File Id Function Id File Name Function Name

--- ------- ----------- --------- -------------

0 1 0 bar.c func0

0 1 1 bar.c func1

pct>

If you would like to collect profile information at the block level, you’ll need to

specify the block(s) using either the block or blockid clause. You’ll need the block

identifier or block name as returned by the block command. To list all the blocks in

the file bar.c:

block file "bar.c" "*"

Tid File Id Block Id File Name Block Name

--- ------- -------- --------- ---------------------------

0 1 0 bar.c func0!block@000019:000021

0 1 1 bar.c func0!block@000021:000021

0 1 2 bar.c func0!block@000025:000026

0 1 3 bar.c func0!block@000026:000026

You can specify the function on the profile add subcommand using its identifier or

name:

pct> profile add profname wclock to file "bar.c" function "func0"

pct> profile add profname wclock to file "bar.c" funcid 0

You can add probes at the block level by using a block name or block identifier:

pct> profile add profname wclock to file "bar.c" block ’func0!block@000026:000026’

pct> profile add profname wclock to file "bar.c" block "*"

You can also specify multiple functions:

62 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

pct> profile add profname wclock to file "bar.c" funcid 0,1

pct> profile add profname wclock to file "bar.c" function "*"

pct> profile add profname wclock to file "bar.c" function "func0","func1"

Removing hardware profile probes from processes: When you issue the

profile add subcommand to install profile probes, the probes are given a unique

probe identifier. You can use this probe identifier on the profile remove

subcommand to remove the probes. To ascertain the probe identifier, use the

profile show subcommand with its probes clause as in:

pct> profile show probes

Probe Id Command

-------- ---

0 profile add profid 0 to file "prod_cons.c" function "alarm_handler"

1 profile add profid 0 to file "prod_cons.c" function "consume"

pct>

To remove the probe set whose identifier is 0:

pct> profile remove probe 0

Using the communication profiling tool

Using the PCT, you can collect communication profiles for analysis within the PVT.

The profile information collected is stored in netCDF (network Common Data Form)

format on each node running instrumented processes. The PVT can read netCDF

files and summarize the profile information in reports. For more information on using

the PVT to read netCDF files output by the PCT, refer to “Using the Profile

Visualization Tool” on page 76.

Before you can use any of the profile collection subcommands, you must first

specify that you are collecting communications profile information. Refer to

“Selecting the type of probe data to be collected” on page 52 for more information.

Once you have indicated that you’ll be collecting communications profile

information, you can select the output location for the netCDF files generated by the

PCT. To do this, you simply supply an output directory and ″base name″ (file prefix)

for the netCDF files. Refer to “Setting the output location for the netCDF files

generated” on page 60 for more information.

Setting the output location for the netCDF files generated: The

communications profile information is saved as a separate netCDF file on each

node running instrumented processes. Using the commcount set path

subcommand, you can specify the output location and ″base name″ file prefix for

these files. For example:

pct> commcount set path "profile/output"

Adding communications profile probes to processes: By adding

communications profile probes to processes, you can collect timing information for

communication profiling constraints. To add communication profile probes, you need

to know the specific probe type identifier or name as returned by the commcount

show subcommand. To list available probe type identifiers and names, specify the

probetypes clause on the commcount show subcommand.

For example, to list the installed commcount probes:

pct> commcount show probes

Probe Id Command

Chapter 2. Analyzing program performance using the PE Benchmarker toolset 63

|
|
|
|
|
|
|
|

-------- ---

0 commcount add commid 0 to file "prod_cons.c" function "alarm_handler"

1 commcount add commid 0 to file "prod_cons.c" function "consume"

pct>

To list available commcount probe types:

pct> commcount show probetypes

Comm Id Comm Name Description

------- --------- ----------------

0 all both mpi and lapi message byte counts

1 mpi_count mpi message byte count

2 lapi_count lapi message byte count

pct>

You can use the commcount add subcommand to add one or more probe types to

one or more processes. You can add the probes at the file level, in which case

profile information for the entire file will be produced, the function level, or block

level.

By default, the commcount add subcommand acts upon the current task group.

Unless you have specified another task group to be the current task group (as

described in “Grouping tasks of a POE application” on page 46), the current task

group will be the task group connected. The task group connected is created

automatically by the PCT when you either connect to or load an application (as

described in “Connecting to a running application” on page 49 and “Loading and

starting a new application” on page 48). The task group connected consists of all

connected tasks in a POE application. If you are instrumenting a POE application,

however, it is useful to understand the concept of task groups as described in

“Grouping tasks of a POE application” on page 46.

Note: The set of tasks in which you will add the probes cannot include different

executables in an MPMD application. For example, if an MPMD application

consists of executables a.out and b.out, then this command cannot be

applied to a task group that contains both a.out and b.out tasks.

If you are collecting communication profiling information at the file level, you’ll need

to specify the files using either the file or fileid clause on the commcount add

subcommand. To do this, you’ll need the file identifier or file name information as

returned by the file subcommand. To list all available source files in the current task

group:

pct> file "*"

Tid File Id File Name Path

--- ------- --------- -------------

0 0 bar.c ../../lib/src

0 1 foo1.c ../../lib/src

0 2 foo2.c ../src

pct>

The commcount set subcommand sets the mode specifying whether a probe

reports its data in terms of pthread ids or OpenMP thread ids. The default is to

report data in terms of pthread ids, even when the instrumentation point is within an

OpenMP parallel region. If commcount set mode pthread is issued, then all

probes, even those within an OpenMP region, will report their data in terms of

pthread id. If the command commcount set mode openmp is issued, then an

instrumentation point within an OpenMP parallel region will report its data in terms

64 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

of the OpenMP thread id, and instrumentation points outside of OpenMP parallel

regions will report their data in terms of pthread id. This command must be issued

before the first profile probe is added.

To add a certain type of profile probe, you can supply the commcount add

subcommand with the profile probe type and option information, as well as the file

information. You can specify:

v the communications probe type by supplying the:

– profile probe type identifier using the commid clause

– profile probe type name using the commname clause

v the file information by suppling the:

– file identifier using the fileid clause

– file name using the file clause and a regular expression

For example:

pct> commcount add commname mpi_count to fileid 0

pct> commcount add commid 0 to file "bar.c"

You can also specify multiple profile probe types or multiple files:

pct> commcount add commname mpi_count commid 2 to fileid 3,4

If you would like to collect communications profiling information at the function level

(instead of collecting profile information for an entire file), you’ll need to specify the

function(s) using either the function or funcid clause. You’ll need the function

identifier or function name information as returned by the function subcommand. To

list all the functions in the file bar.c:

pct> function file "bar.c" "*"

Tid File Id Function Id File Name Function Name

--- ------- ----------- --------- -------------

0 1 0 bar.c func0

0 1 1 bar.c func1

pct>

If you would like to collect profile information at the block level, you’ll need to

specify the block(s) using either the block or blockid clause. You’ll need the block

identifier or block name as returned by the block command. To list all the blocks in

the file bar.c:

block file "bar.c" "*"

Tid File Id Block Id File Name Block Name

--- ------- -------- --------- ---------------------------

0 1 0 bar.c func0!block@000019:000021

0 1 1 bar.c func0!block@000021:000021

0 1 2 bar.c func0!block@000025:000026

0 1 3 bar.c func0!block@000026:000026

You can specify the function on the commcount add subcommand using its

identifier or name:

pct> commcount add commname mpi_count to file "bar.c" function "func0"

pct> commcount add commname mpi_count to file "bar.c" funcid 0

pct> commcount add commname mpi_count to file "bar.c" block "myfunc!block@000010:000012’

You can also specify multiple functions:

Chapter 2. Analyzing program performance using the PE Benchmarker toolset 65

pct> commcount add commname mpi_count to file "bar.c" funcid 0,1

pct> commcount add commname mpi_count to file "bar.c" function "*"

pct> commcount add commname mpi_count to file "bar.c" function "func0","func1"

Removing communications profile probes from processes: When you issue

the commcount add subcommand to install communications probes, the probes

are given a unique probe identifier. You can use this probe identifier on the

commcount remove subcommand to remove the probes. To ascertain the probe

identifier, use the commcount show subcommand with its probes clause as in:

pct> profile show probes

Probe Id Command

-------- ---

0 commcount add commid 0 to file "prod_cons.c" function "alarm_handler"

1 commcount add commid 0 to file "prod_cons.c" function "consume"

pct>

To remove the probe set whose identifier is 0:

pct> commcount remove probe 0

Using the OpenMP profiling tool

Using the PCT, you can collect OpenMP profiling data for analysis within the PVT.

The profile information collected is stored in netCDF (network Common Data Form)

format on each node running instrumented processes. The PVT can read netCDF

files and summarize the profile information in reports. For more information on using

the PVT to read netCDF files output by the PCT, refer to “Using the Profile

Visualization Tool” on page 76.

Before you can use any of the openmp collection subcommands, you must first

specify that you are collecting OpenMP profile information. Refer to “Selecting the

type of probe data to be collected” on page 52 for more information. Once you have

indicated that you’ll be collecting OpenMP profile information, you can select the

output location for the netCDF files generated by the PCT. To do this, you simply

supply an output directory and ″base name″ (file prefix) for the netCDF files. Refer

to “Setting the output location for the netCDF files generated” on page 60 for more

information.

Setting the output location for the netCDF files generated: The OpenMP

profile information is saved as a separate netCDF file on each node running

instrumented processes. Using the openmp set path subcommand, you can

specify the output location and ″base name″ file prefix for these files. For example:

pct> openmp set path "profile/output"

Adding OpenMP profiling probes to processes: By adding OpenMP profile

probes to processes, you can collect OpenMP profiling information. To add OpenMP

profiling probes, you need to know the specific probe type identifier or name as

returned by the openmp show subcommand. To list available probe type identifiers

and names, specify the probetypes clause on the openmp show subcommand.

For example, to list the installed OpenMP probes:

pct> openmp show probes

To list available OpenMP probe types:

pct> openmp show probetypes

Omp Id Omp Name Description

66 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|
|
|
|
|
|
|
|

----- ------- -----------------

0 all All probes below

1 lock Locking function

2 critical Critical region

3 setup Setup/barrier

4 parallel Parallel regions

5 query OpenMP query functions

For OpenMP the only functions that can be implemented are ones that contain

OpenMP callsites (calls to OpenMP runtime or OpenMP parallel region). In order to

find these callsites, you can use the openmp openmp callsite subcommand. This

subcommand gives you a list of OpenMP callsites for the specified file or set of

functions.

For example,

pct> openmp callsite file “main.f”

OmpId FileName Function Name Line/Addr Callee

--

3 main.f deltat 01145 Master_TPO

4 main.f deltat 01146 deltat@OL@A

3 main.f initbuf 00790 InitializeRTE

3 main.f initbuf 00790 WSDoSetup_TPO

4 main.f initbuf 00790 initbuf@OL@8

3 main.f initbuf 00855 WSDoSetup_TPO

4 main.f initbuf 00855 initbuf@OL@9

3 main.f initbuf 00904 Barrier_TPO

Note: If the function specified contains ‘@OL’, such as ‘compute@OL@3’ the

returned function name is still the id of the parent function ‘compute’, not the

function name of the ‘compute@OL@3’ itself. The reason is that when we

add probe on the function ‘compute’, we implicitly instrument the function

‘compute@OL’.

Once you have the probe type and set of functions to be instrumented, you can use

the openmp add subcommand to add one or more probes to one or more

processes. You can add the probes at the file level, in which case OpenMP profile

information for the entire file will be produced, or at the function level.

By default, the openmp add subcommand acts upon the current task group. Unless

you have specified another task group to be the current task group (as described in

“Grouping tasks of a POE application” on page 46), the current task group will be

the task group connected. The task group connected is created automatically by the

PCT when you either connect to or load an application (as described in “Connecting

to a running application” on page 49 and “Loading and starting a new application”

on page 48). The task group connected consists of all connected tasks in a POE

application. If you are instrumenting a serial application, you do not need to concern

yourself with task groups. If you are instrumenting a POE application, however, it is

useful to understand the concept of task groups as described in “Grouping tasks of

a POE application” on page 46.

Note: The set of tasks in which you will add the probes cannot include different

executables in an MPMD application. For example, if an MPMD application

consists of executables a.out and b.out, then this command cannot be

applied to a task group that contains both a.out and b.out tasks.

If you are collecting OpenMP profile information at the file level, you’ll need to

specify the files using either the file or fileid clause on the openmp add

Chapter 2. Analyzing program performance using the PE Benchmarker toolset 67

subcommand. To do this, you’ll need the file identifier or file name information as

returned by the file subcommand. To list all available source files in the current task

group:

pct> file "*"

Tid File Id File Name Path

--- ------- --------- -------------

0 0 bar.c ../../lib/src

0 1 foo1.c ../../lib/src

0 2 foo2.c ../src

pct>

The openmp set mode subcommand sets the mode specifying whether a probe

reports its data in terms of pthread ids or OpenMP pthread ids. The default is to

report data in terms of pthread ids, even when the instrumentation point is within an

OpenMP parallel region. If openmp set mode pthread is issued, then all probes,

even those within an OpenMP region, will report their data in terms of pthread id. If

the command openmp set mode openmp is issued, then an instrumentation point

within an OpenMP parallel region will report its data in terms of the OpenMP thread

id, and instrumentation points outside of OpenMP parallel regions will report their

data in terms of pthread id. This command must be issued before the first OpenMP

probe is added.

To add a certain type of OpenMP probe, you can supply the openmp add

subcommand with the OpenMP probe type and option information, as well as the

file information. You can specify:

v the profile probe type by supplying the:

– OpenMP probe type identifier using the ompid clause

– OpenMP probe type name using the ompname clause

v the file information by suppling the:

– file identifier using the fileid clause

– file name using the file clause and a regular expression

For example:

pct> openmp add ompname parallel to fileid 0

pct> openmp add ompid 1 to file "bar.c"

You can also specify multiple profile probe types or multiple files:

pct> openmp add ompname lock ompid 2 to fileid 3,4

If you would like to collect OpenMP profile information at the function level (instead

of collecting profile information for an entire file), you’ll need to specify the

function(s) using either the function or funcid clause. You’ll need the function

identifier or function name information as returned by the function subcommand. To

list all the functions in the file bar.c:

pct> function file "bar.c" "*"

Tid File Id Function Id File Name Function Name

--- ------- ----------- --------- -------------

0 1 0 bar.c func0

0 1 1 bar.c func1

pct>

You can specify the function on the openmp add subcommand using its identifier

or name:

68 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

pct> openmp add ompname parallel to file "bar.c" function "func0"

pct> openmp add ompname parallel to file "bar.c" funcid 0

You can also specify multiple functions:

pct> openmp add ompname parallel to file "bar.c" funcid 0,1

pct> openmp add ompname parallel to file "bar.c" function "*"

pct> openmp add ompname parallel to file "bar.c" function "func0","func1"

Removing OpenMP profile probes from processes: When you issue the

openmp add subcommand to install OpenMP profiling probes, the probes are given

a unique probe identifier. You can use this probe identifier on the openmp remove

subcommand to remove the probes. To ascertain the probe identifier, use the

openmp show subcommand with its probes clause as in:

pct> profile show probes

Probe Id Command

-------- ---

0 openmp add ompid 0 to file "prod_cons.c" function "alarm_handler"

1 openmp add ompid 0 to file "prod_cons.c" function "consume"

pct>

To remove the probe set whose identifier is 0:

pct> openmp remove probe 0

Terminating connected processes

The PCT enables you to terminate execution of connected processes by issuing the

destroy subcommand. You might, for example, wish to terminate execution of your

target application after you have finished examining it. By default, the destroy

subcommand acts upon the current task group. Unless you have specified another

task group to be the current task group (as described in “Grouping tasks of a POE

application” on page 46), the current task group will be the task group connected.

The task group connected is created automatically by the PCT when you either

connect to or load an application (as described in “Connecting to a running

application” on page 49 and “Loading and starting a new application” on page 48).

The task group connected consists of all connected tasks in a POE application. If

you are instrumenting a serial application, you do not need to concern yourself with

task groups. If you are instrumenting a POE application, however, it is useful to

understand the concept of task groups as described in “Grouping tasks of a POE

application” on page 46.

Note: When working with a POE application, be aware that terminating any

process of the application will cause POE to terminate all of the application’s

processes. This termination of all processes is a function of POE, not of the

PCT. For more information, refer to IBM Parallel Environment: Operation and

Use, Volume 1.

To terminate execution of all tasks in the current task group:

pct> destroy

To terminate execution of tasks in a specific task group (in this case, the task group

connected), use the group clause on the destroy subcommand.

pct> destroy group connected

Chapter 2. Analyzing program performance using the PE Benchmarker toolset 69

To terminate a specific set of tasks in a POE application, use the task clause on

the destroy subcommand. To determine how many tasks are available, you can

use the show group subcommand to list the tasks in the task group all:

pct> show group all

Tid Program Name Host Cpu Type State

--- ------------------------ ---------------- -------- ------

0 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded

1 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded

2 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded

3 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded

.

.

.

pct> destroy task 1,3

You can also, optionally, terminate execution of all connected tasks when exiting the

PCT. To do this, use the exit command with its destroy clause (as described in

“Exiting the Performance Collection Tool” on page 71).

Disconnecting from the application

Once you are through examining a particular application, or particular tasks in an

application, you can disconnect from the application or application tasks by issuing

the disconnect subcommand. Once a process is disconnected, the PCT will no

longer be able to control execution of, or instrument, the process unless it

reconnects to the process. By default, the disconnect subcommand acts upon the

current task group. Unless you have specified another task group to be the current

task group (as described in “Grouping tasks of a POE application” on page 46), the

current task group will be the task group connected. The task group connected is

created automatically by the PCT when you either connect to or load an application

(as described in “Connecting to a running application” on page 49 and “Loading and

starting a new application” on page 48). The task group connected consists of all

connected tasks in a POE application. If you are instrumenting a serial application,

you do not need to concern yourself with task groups. If you are instrumenting a

POE application, however, it is useful to understand the concept of task groups as

described in “Grouping tasks of a POE application” on page 46.

To disconnect all tasks in the current task group:

pct> disconnect

To disconnect tasks in a specific task group (in this case, the task group

connected), use the group clause on the disconnect subcommand.

pct> disconnect group connected

To disconnect a specific set of tasks in a POE application, use the task clause on

the disconnect subcommand. To determine how many tasks are available, you can

use the show group subcommand to list the tasks in the task group all:

pct> show group all

Tid Program Name Host Cpu Type State

--- ------------------------ ---------------- -------- ------

0 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded

1 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded

2 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded

3 /home/strofino/prod_cons pe04.pok.ibm.com Unknown Loaded.

.

.

pct> disconnect task 1,3

70 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

Exiting the Performance Collection Tool

To exit the PCT and return to your AIX command prompt, issue the exit

subcommand:

pct> exit

If you loaded the target application, it will be terminated when PCT exits. If you

merely connected to the target application, you must explicitly instruct the PCT to

terminate processes. To terminate execution of all connected processes as you exit

the PCT, include the destroy clause on the exit subcommand.

pct> exit destroy

Creating and Running PCT script files

Using the command-line interface of the PCT, you are able to run a series of

commands that are stored in a file. This file, called a ″PCT script file″ is a simple

text file that lists a sequence of PCT commands that you want to run. Because PCT

script files are reusable, they are ideal for situations where you have a set of

commands you want to run during multiple PCT sessions. For example, you might

want to create a PCT script file that loads and prepares an application so that you

can then perform a variety of tasks on the prepared application.

To create a PCT script file, use any ASCII text editor. In the file, place one PCT

command per line. You can add comment lines to the file using the # (pound sign)

character. For example, here is a simple PCT script file.

This example uses the ’chaotic’ application from the DPCL samples.

The script loads a four-way chaotic application, inserts probes,

starts the application, and then waits for the application to complete

load poe exec /home/user/chaotic poeargs "-procs 4"

select trace

trace set path "/scratch/trace_out"

trace add mpiid 0 to file "chaotic.f"

start

wait

In the sample PCT script file shown above, note the use of the wait subcommand.

You need to use the wait subcommand in PCT script files to prevent the PCT from

exiting before it has collected probe data. The wait subcommand blocks the PCT’s

execution so that it can wait for asynchronous events (such as a task terminating)

to occur. When one of these asynchronous events occurs, the PCT resumes

execution and returns the event that occurred. Be aware that the wait subcommand

is intended for use only within PCT script files; it is not intended for interactive

command-line sessions.

The history.cmd file, located in $HOME/.pct/history.cmd, contains all of the PCT

commands that were issued from the last PCT session. It may be helpful to refer to

this file when creating the PCT script file. Note that history.cmd is overwritten by

each new PCT invocation.

To run the script file, you can either use the -s option of the pct command when

starting the tool (as described in “Starting the Performance Collection Tool in

command-line mode” on page 45), or you can use the run subcommand of the pct

command. For example, to run the PCT script file myscript.cmd when starting the

tool, you would enter the following at the AIX command prompt:

pct -c -s myscript.cmd

Alternatively, you could run the myscript.cmd script file using the run subcommand.

For example:

Chapter 2. Analyzing program performance using the PE Benchmarker toolset 71

|
|
|
|

pct> run "myscript.cmd"

Creating, converting, and viewing information contained in UTE

interval files

When you collect MPI and user event traces using the PCT (as described in “Using

the Performance Collection Tool” on page 38), the collected information is saved, on

each machine running instrumented processes, as a standard AIX event trace file.

In order to view the information contained in these standard AIX trace files, you will

first need to convert them into UTE (Unified Trace Environment) interval files. While

an AIX event trace file has a time stamp indicating the point in time when an event

occurred, UTE interval files take this information to also determine how long an

event lasts. Because they include this duration information, UTE interval files are

easier to visualize than traditional AIX event trace files. The UTE utilities are:

v The uteconvert utility which coverts AIX event trace files into UTE interval trace

files.

v The utemerge utility which merges multiple UTE interval files into a single UTE

interval file.

v The utestats utility which generates statistics tables from UTE interval files.

v The libTraceInput.so library which is used with Argonne National Laboratory’s

traceTOslog2 utility to convert UTE interval files into the slog2 format viewable by

Argonne National Laboratory’s Jumpshot tool. The traceTOslog2 utility can be

obtained using the URL http://www-unix.mcs.anl.gov/perfvis/download/
index.htm#slog2sdk. The latest version of jumpshot can be obtained using the

URL http://www-unix.mcs.anl.gov/perfvis/software/viewers/index.htm#Jumpshot-4.

Figure 2 on page 37 illustrates the UTE utilities you can use to either generate

statistics tables from UTE interval files or view statistics graphically using Argonne

National Laboratory’s Jumpshot tool. Regardless of whether you want to view the

statistics in simple tables or graphically in Jumpshot, the first thing you’ll need to do

is use the uteconvert utility to create UTE interval files from the AIX trace files

(�a�). (See “Converting AIX trace files into UTE interval trace files” on page 73 for

more information.) Then, if you want to view the statistics in simple tables (�b�), you

can use the utestats utility. You can optionally merge multiple UTE files into a

single UTE file using the utemerge utility before using the utestats utility to

generate the statistics tables. (See “Generating statistics tables from UTE interval

trace files” on page 73 for more information.) If you instead want to view the

information contained in the UTE interval files graphically (�c�), you can convert

them into SLOG2 files using the traceTOslog2 utility. The SLOG2 files are readable

by Argonne National Laboratory’s Jumpshot Tool. (See “Converting UTE interval

files into SLOG2 files required by Argonne National Laboratory’s Jumpshot Tool” on

page 75 for more information.)

Note: The UTE utilities are intended only for the AIX event trace files generated

when you collect MPI and user event traces with the PCT. If you instead

collect hardware and operating system profiles, communication counts or

OpenMP constructs, the information is output by the PCT as netCDF

(network Common Data Form) files and these UTE utilities are not

necessary. Instead, the netCDF files can be read directly into the PVT as

described in “Using the Profile Visualization Tool” on page 76.

The following sections provide an overview of the UTE utilities. Note, however, that

this section does not attempt to describe all the options available when using these

72 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

utilities. For complete reference information on any of the utilities described in this

section, refer to their man pages contained in Appendix A, “Parallel environment

tools commands,” on page 83.

Converting AIX trace files into UTE interval trace files

Regardless of whether you want to view the statistics you have collected in simple

tables, or graphically in Jumpshot, the first thing you’ll need to do is use the

uteconvert utility to create UTE interval files from the AIX trace files generated by

the PCT. When you collect MPI and user event traces, the collected information is

saved, on each machine running instrumented processes, as a standard AIX event

trace file. The names of these individual trace files will consist of a common ″base

name″ that you specified using the PCT, followed by a node-specific suffix supplied

by the tool itself. Using the uteconvert utility, you can convert either a single AIX

trace file into a UTE interval file, or a set of AIX trace files with the same prefix into

a set of UTE interval files.

To convert a single AIX trace file into a UTE interval file, simply pass the

uteconvert utility the name of the trace file located in the current directory. For

example, to convert the AIX trace file mytrace into a UTE interval trace file, enter:

uteconvert mytrace

Using the -o flag, you can optionally specify the name of the output UTE interval

file. For example, to specify that the output file should be named outute.

uteconvert -o outute mytrace

To convert a set of AIX trace files into a set of UTE interval files, simply specify the

number of files using the -n option, and supply the common ″base name″ prefix

shared by the files. For example, to convert five trace files with the prefix mytraces

into UTE interval files, copy the trace files to a common directory and enter:

uteconvert -n 5 mytraces

You can optionally use the –o option to specify a file name prefix for the resulting

UTE interval files.

uteconvert -n 5 -o outute mytraces

When you use the -n option, make sure you do not have any old AIX trace files

from previous executions of the program still in the directory. The uteconvert utility

will process the first n trace files it finds that match the base name prefix.

For complete reference information on the uteconvert utility, refer to its man page

in Appendix A, “Parallel environment tools commands,” on page 83. If you want to

view the statistics information contained in the UTE file(s) in simple tables, refer to

“Generating statistics tables from UTE interval trace files.” If you want to view the

statistics information contained in the UTE file(s) graphically, refer to “Converting

UTE interval files into SLOG2 files required by Argonne National Laboratory’s

Jumpshot Tool” on page 75.

Generating statistics tables from UTE interval trace files

Once you have created UTE interval trace files (as described in “Converting AIX

trace files into UTE interval trace files”), you can generate statistical tables from

them using the utestats utility. In addition to giving you a simple alternative to

graphical analysis, the utestats utility can help you identify which traces you want

to view in a graphical visualization tool like Jumpshot. This is useful, because you

are often unable to view all process threads in a graphical visualization tool.

Chapter 2. Analyzing program performance using the PE Benchmarker toolset 73

Jumpshot, for example, supports only 64 threads. Using the utestats utility, you can

determine which threads are of interest. In addition, if you do not wish to use a

graphical visualization tool, you can analyze traces extensively using the utestats

utility alone.

By default, six two-dimensional tables are generated. These tables are:

v Time Bin vs. Node

v Thread vs. Event Type

v Event Type vs. Thread

v Node vs. Event Type

v Event Type vs. Node

v Node vs. Processor

The computed statistic for all tables is the sum or the duration. A Node vs.

Processor table would look like the following (where tabs have been replaced by

spaces to make the column alignment clearer). The unit of measurement is

seconds, so, for example, the accumulated duration of all interval records for CPU 1

of node 0 was 2.258315 seconds.

node/cpu 0 1

 0 2.823739 2.258315

 1 0.873746 4.241253

 2 0.956515 4.322891

 3 0.853188 4.334650

You can generate these statistics tables for a single UTE interval file or multiple

UTE interval files. You can also generate these statistics tables for a merged UTE

interval file. A merged UTE interval file is one that consists of multiple UTE interval

files that have been merged into one file by the utemerge utility.

For example, to generate the statistics tables for the UTE interval file mytrace.ute,

you would enter:

utestats mytrace.ute

By default, the statistics tables will be printed to standard output. You can, however,

redirect them to a file using the -o option on the utestats command. For example,

to redirect the statistics tables output by the utestats utility to the file stattables, you

would enter:

utestats -o stattables mytrace.ute

As already stated, you can also specify multiple UTE interval files from which the

statistics should be generated.

utestats mytrace.ute mytrace2.ute mytrace3.ute

Rather than specify multiple UTE interval trace file names on the utestats

command, you could instead use the utemerge utility to first merge the multiple

UTE interval trace files into a single UTE interval trace file. To do this, you use the

-n option on the utemerge command to indicate the number of files you want to

merge, and supply the common ″base name″ prefix shared by the files. For

example:

utemerge -n 3 mytrace

The merged UTE interval file generated by the utemerge utility will, by default, be

named trcfile.ute. To specify your own output file name, use the -o option.

utemerge -n 3 -o mergedtrc.ute mytrace

74 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

When you use the -n option, make sure you do not have any old UTE interval files

from previous executions of the program still in the directory. The utemerge utility

will process the first n interval files it finds that match the base name prefix.

You can then generate statistics for the merged UTE interval file using the utestats

command.

utestats mergedtrc.ute

For complete reference information on the utestats and utemerge utilities, refer to

their man pages in Appendix A, “Parallel environment tools commands,” on page

83.

Note: Argonne National Laboratory’s Jumpshot Tool also includes a statistics view

feature that displays the same information as the utestats command

generates. Jumpshot also has the ability to display statistics information

graphically. The Jumpshot Tool is described in “Converting UTE interval files

into SLOG2 files required by Argonne National Laboratory’s Jumpshot Tool.”

Converting UTE interval files into SLOG2 files required by Argonne

National Laboratory’s Jumpshot Tool

If you would like to view the traces collected by the PCT graphically, you can use

the Jumpshot tool developed by Argonne National Laboratory. While Jumpshot is a

public domain tool and not part of the PE Benchmarker Toolset, we provide a

library — libTraceInput.so —which is used with the traceTOslog2 utility for

converting UTE interval files into the SLOG2 files required by Jumpshot. For more

information on the utilities for converting the AIX trace files output by the PCT into

formats readable by the utestats utility and Jumpshot, refer to “Creating,

converting, and viewing information contained in UTE interval files” on page 72. You

can use the traceTOslog2 utility to:

v convert a single UTE interval file into a single SLOG2 file.

v merge multiple UTE interval files into a single SLOG2 file.

If you are dealing with a massively parallel job, it is unlikely that you will be able to

display all the process threads in Jumpshot. Rather than merge all the trace files

generated from such a job, you will instead want to merge selected trace files. To

determine which files to merge, you can first use the utestats utility (as described

in “Generating statistics tables from UTE interval trace files” on page 73) to

determine the characteristics of the files. By analyzing the files first using the

utestats utility, you can determine which files contain the interesting information

that you want to merge and view in Jumpshot.

To convert a single UTE interval file into a single SLOG2 file, pass the

traceTOslog2 command the name of the file located in the current directory. For

example:

traceTOslog2 mytrace.ute

By default, the traceTOslog2 utility appends the suffix .slog2 to the input filename.

Using the -o option on the traceTOslog2 command, however, you can specify an

output file name. For example:

traceTOslog2 -o mergedtrc.slog2 mytrace.ute

Chapter 2. Analyzing program performance using the PE Benchmarker toolset 75

|
|
|

To merge multiple UTE interval files into a single SLOG2 file, use the -n option to

indicate the number of files to merge and pass the traceTOslog2 utility the

common ″base name″ prefix of the files. For example, to merge 3 files whose prefix

is mytrace, enter:

traceTOslog2 -n 3 mergedtrc.slog2 mytrace

When you use the -n option, make sure you do not have any old UTE interval files

from previous executions of the program still in the directory. The traceTOslog2

utility will process the first n interval files it finds that match the base name prefix.

If you generated traces on a system without access to a switch, then you must use

the -g flag when invoking traceTOslog2. In this case, the individual interval files will

be merged, but the timestamps may not be correctly synchronized since clocks on

individual nodes may not be properly synchronized.

If you want to limit the number of tasks that you want included in the slog2 file, you

can use the -s option to specify the set of tasks to be included. The task list is a

comma-delimited list of task indices or task ranges. For example, the following

command will include trace records from tasks 1, 3, 5, 6, and 7. This example

assumes all tasks were run on the same node and therefore are contained within

one UTE interval file.

traceTOslog2 -o mergedtrc.slog2 -s 1,3,5-7 mytrace

For further information about the traceTOslog2 utility, refer to the documentation

provided with that utility by Argonne national Laboratory.

You must use the traceTOslog2 utility to generate slog2 files viewable by the latest

version of Jumpshot. If you need to generate slog files for viewing with the previous

version of Jumpshot, then the slogmerge utility is still available. For complete

reference information on the slogmerge utility, refer to “slogmerge” on page 161.

Using the Profile Visualization Tool

The PVT is a postmortem analysis tool. It is designed to process profile data files

generated by the PCT used in application profiling. For more information on the

PCT, refer to “Using the Performance Collection Tool” on page 38. After processing

profile data, you can view the results in the PVT’s graphical user interface display.

You can also generate report and summary files. The PVT provides a command-line

interface to process individual profile files directly into a summary file without

initializing the graphic display. The command-line interface also enables you to

generate textual profile reports. There is a discussion of the PVT’s graphical user

interface, followed by a description of the command-line interface.

Using the Profile Visualization Tool’s graphical user interface

The PVT provides a graphical user interface that enables you to process profile

data files and view the results. The options available in the graphical user interface

correspond to the commands available in the PVT’s command-line interface. For

more information on the command-line interface, refer to “Using the Profile

Visualization Tool’s command line interface” on page 80.

Using the Profile Visualization Tool's graphical user interface -

overview

The PVT’s graphical user interface allows you to process and view profile data. You

can load one or more files for processing and view the results in a variety of ways.

After initializing the graphical user interface, you can choose the appropriate

76 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|
|
|
|
|
|
|
|
|

options, as shown in Table 16:

 Table 16. Using the PVT graphical user interface to process and view profile data

If: Then:

You wish to load files for processing. Select File → Load....

Doing this opens the Load Files panel. The

Load Files panel will enable you to specify

what files to load into the tool for processing.

You can specify one or more individual

profile files, or a summary profile file.

You wish to control the way profile data is

presented.

Select the View option.

Doing this opens the View menu. The View

menu will enable you to specify how profile

data is presented in the main display

window. You can specify how to sort data, as

well as show function call count and

resource usage.

You wish to view selected objects. Select the Object option.

Doing this opens the Object menu. The

Object menu will enable you to view

information such as source code, profile

data, and statistics reports for selected

objects.

You wish to search for a text string. Select File → Find...

Doing this opens the Find panel. The Find

panel will enable you to specify the text

string for which you want to search.

You wish to generate reports of profile data. Select the Report option.

Doing this opens the Report menu. The

Report menu will enable you to select and

view a variety of reports, including function

call count, CPU usage, and memory usage.

You wish to save summary data to a file. Select File → Save Statistic Summary...

Doing this opens the Save Statistic Summary

panel. This panel will enable you to accept a

user-specified file name. The statistic

summary data of the input profile file or files

will be written to the file.

You wish to export profile data to a file. Select File → Export...

Doing this opens the Export panel. This

panel will enable you to accept a

user-specified file name. The profile data that

is currently loaded will be written to the file.

You wish to set user preferences. Select File → Preferences...

Doing this opens the Preferences panel. At

this time, this panel will enable you to access

only one option: source code search paths.

There is a text field available that allows you

to specify where the source code files reside.

Chapter 2. Analyzing program performance using the PE Benchmarker toolset 77

|

|

Table 16. Using the PVT graphical user interface to process and view profile

data (continued)

If: Then:

You wish to exit the PVT. Select File → Exit...

Doing this closes the main display window

and exits the PVT.

The following sections describe the graphical user interface in greater detail.

Starting the Profile Visualization Tool

You can start the PVT in either graphical-user-interface (GUI) mode or

command-line mode. For instructions on starting the PVT in command-line mode,

refer to “Using the Profile Visualization Tool’s command line interface” on page 80.

To start the PVT in graphical-user-interface mode:

Enter the pvt command at the AIX command prompt.

$ pvt

Doing this starts the PVT in graphical-user-interface mode and opens its first

window – the main display.

To start the PVT in graphical-user-interface mode with input profile data loaded and

showing in the main display window, enter:

$ pvt one_or_more_file_names

The main display window shows a hierarchical list of all the functions being profiled.

The window is divided into two panes, the left one for viewing source code structure

and the right one for viewing profile data. Each pane has a corresponding menu:

the Source View menu and the Data View menu. Both the Source View and Data

View menus are grayed out if no input file is loaded. The two panes share the same

vertical scroll bar and are scrolled together. You can resize the panes horizontally to

change their relative proportion in the main display window.

The source code structure pane uses ASCII text to show the identifier of each

displayed object. The profile data pane represents a selected profile data field,

which uses a bar chart to show the profile data associated with each object. The

data value is displayed in front of the bar. When you select an object in the source

code structure pane, an object menu opens that provides some actions associated

with the selected object. You left-click to select an object, and right-click to bring up

the selected object’s object menu. When you select an object, the Object menu in

the main display window will become available also, providing the same functions

as the popup object menu.

If you load a summary profile file to start the GUI, process objects are labeled as

summary process object in order to distinguish them from the process objects

available in an individual profile file. Each function object has a set of statistics

records associated with each profile data field.

Following are explanations of the Source View and Data View menus.

Viewing source code structure: The Source View is a drop-down menu with two

options: a Thread-Centric View and a Function-Centric View. The same options

are available under the View drop-down menu in the main display window. See

“Viewing program variables” on page 25 for more information. If the input file you

78 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|
|

are loading to start the GUI is a summary file, there will be no thread information in

the file. The structure displayed will be the same no matter which view is used.

Viewing selected profile data: The Data View is a drop-down menu that enables

you to change the type of data to be shown in the main display window. There are

three sets of Data View menu options depending on what data was collected when

running the PCT.

For netCDF files generated when gathering hardware and operating system profiles:

v Function Call Count

v Wall Clock Time

v Resource Usage

v Hardware Counters.

For netCDF files generated when gathering communication count data:

v Function Call Count

v Wall Clock Time

v MPI Bytes Sent

v MPI Bytes Received

v LAPI Bytes Sent

v LAPI Bytes Received.

For netCDF files generated when gathering OpenMP construct data:

v Function Call Count

v Wall Clock Time

v User CPU Usage

v System CPU Usage

You will find similar options available in the View drop-down menu. When a

particular data type is unavailable in any of the input data files, its corresponding

menu option in the View menu is grayed out. The Data View drop-down menu only

shows the options that have corresponding values in the input data files. When a

set of files is loaded, Function Call Count is the default field in the Data View

menu.

Accessing the Profile Visualization Tool’s online help system

The PVT’s graphical user interface has been designed to be intuitive and easy to

use. However, if you do have any trouble, you can refer to the PVT’s online help

system. To access the tool’s online help, select Help → Help Topics off the main

window’s menu bar. Many dialogs of the tool also provide Help buttons or menu

items for starting the help system.

If you open the help from one of the PVT’s dialogs, a help topic describing that

dialog is displayed. If you open the help from the main window, a task overview

topic is displayed.

The PVT help contains topics for each of the major tasks you can perform with the

PVT. The left hand pane of the window enables you to navigate the help system to

display the needed help topic in the right hand pane. There are three ways to

navigate the help system — using the contents tab, using the index tab, or using

the search tab:

Chapter 2. Analyzing program performance using the PE Benchmarker toolset 79

v the contents tab is displayed by default. Simply click on any entry in the contents

tab to display the help topic.

v the index tab shows an index of the entire help system. Simply click on any entry

in the index to display its associated help topic. To search the index, type a string

in the Find field and press <enter>. The first index entry containing the string is

highlighted. Press <enter> again to search for the next occurrence of the string

in the index.

v the search tab enables you to search the help for all occurrences of a text string.

Simply type the string in the Find field and press <enter>. A list of all help topics

containing the string is displayed. The topics are listed in descending order

according to the number of occurrences of the string. The help topic with the

most occurrences of the string is displayed by default.

Using the Profile Visualization Tool’s command line interface

The PVT provides a command-line interface that enables you to process profile files

directly without initializing the graphical user interface. The subcommands available

in the command-line interface correspond to the options available in the graphical

user interface. For more information on the graphical user interface, refer to “Using

the Profile Visualization Tool’s graphical user interface” on page 76.

Using the Profile Visualization Tool's command line interface -

overview

The PVT’s command-line interface allows you to process profile data directly

without using the graphical user interface. After initializing the command-line

interface, you can enter the appropriate subcommands that enable you to:

v Load files for processing

v Create a summary file of all the loaded data

v Generate textual reports of profile data

v Export profile data to a file.

The following sections describe the command-line interface in greater detail.

Starting the Profile Visualization Tool in command-line mode

To start the PVT in command-line mode, enter:

pvt -c

Doing this starts a command-line session without associated profile data. To start a

command-line session with associated profile data, enter:

pvt -c one_or_more_file_names

Once you start a command-line session, the command line prompt changes to pvt>

and remains this way until you enter the exit command to end the command-line

session.

The following sections describe the command-line mode subcommands.

Loading files

You can load a set of profile data files into the session with the load command.

Enter:

load one_or_more_file_names

If a set of data already exists, then the existing data is discarded and the newly

loaded data becomes the current data to be used in future actions.

80 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

Creating a summary file

You can create a summary file of all the loaded data with the sum command. Enter:

sum summary_file_name

The merged summary data is written to the file that you specify in the command,

with a suffix of .cdf being appended to the specified file name.

Generating reports

You can generate textual reports of profile data using the report command. You can

specify several different options with the report command, depending on what type

of output you want. To show a list of available report types, enter:

report list

The result will look something like:

v [0] call_count: function call count report

v [1] wclock: wall clock timer report

v [2] ru_cpu: CPU usage reports

v [3] ru_mem: memory usage report

v [4] ru_paging: paging activities reports

v [5] ru_cswitch: context switch activities reports

v [6] pmc_cycle: instructions per cycle hardware counter reports

v [7] pmc_fpu: floating-point hardware counter reports

v [8] pmc_fxu: fixed-point hardware counter reports

v [9] pmc_branch: branch hardware counter reports

v [10] pmc_lsu: load and store hardware counter reports

v [11] pmc_cache: cache hardware counter reports

v [12] pmc_misc: miscellaneous hardware counter reports

To generate all the available reports to a file, enter:

report output_file_name

To generate reports by report name to a file, enter:

report "one_or_more_report_names" output_file_name

For example:

report "wclock,ru_cpu" output

To generate reports by report id to a file, enter:

report "one_or_more_report_ids" output_file_name

For example:

report "1,2" output

The report names or report ids in double quotes must be separated by a comma,

with no blank space in between. No matter how many reports are selected in one

report command, all the reports are output to a single file specified in the report

command.

Exporting files

You can export profile data to a specified file using the export command. Enter:

export output_file_name

Chapter 2. Analyzing program performance using the PE Benchmarker toolset 81

A suffix .txt will be appended to the specified file name.

The currently loaded profile data is written to the user-specified file in plain text

format, so the data can be loaded easily into a spreadsheet tool like Lotus® 1-2-3®.

The data that is loaded into the tool can be grouped into the following types of

records:

v Profile-session record associated with each process (that is, profile session)

v Individual function or thread records

v Function statistics records.

Exiting the Profile Visualization Tool

You can end a command-line session with the exit command. Enter:

exit

82 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

Appendix A. Parallel environment tools commands

These are the manual pages for the PE tools commands. Each manual page is

organized into the sections listed below. The sections always appear in the same

order, but some appear in all manual pages while others are optional.

NAME Provides the name of the command described in the manual page, and a

brief description of its purpose.

SYNOPSIS

Includes a diagram that summarizes the command syntax, and provides a

brief synopsis of its use and function. If you are unfamiliar with the

typographic conventions used in the syntax diagrams, see “Conventions

and terminology used in this book” on page x.

FLAGS

Lists and describes any required and optional flags for the command.

DESCRIPTION

Describes the command more fully than the NAME and SYNOPSIS

sections.

ENVIRONMENT VARIABLES

Lists and describes any applicable environment variables.

EXAMPLES

Provides examples of ways in which the command is typically used.

FILES

Lists and describes any files related to the command.

RELATED INFORMATION

Lists commands, functions, file formats, and special files that are employed

by the command, that have a purpose related to the command, or that are

otherwise of interest within the context of the command.

© Copyright IBM Corp. 1993, 2006 83

|
|
|

||
|

|
|
|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|
|

pct

NAME

pct – Invokes the Performance Collection Tool (PCT) in either its

graphical-user-interface or command-line mode.

SYNOPSIS

pct [-c [-s script_file]]

The pct command starts the PCT in either its graphical-user-interface mode, or, if

the -c flag is specified, its command-line mode.

FLAGS

-c Specifies that the PCT should be started in command-line mode. Refer to

“Subcommands of the pct command” on page 86 for information on the

subcommands you can issue once the PCT is running in this mode.

-s script_file

When running in command-line mode, instructs the PCT to read its commands

from the script file specified. When running in graphical-user-interface mode,

you cannot use this option.

DESCRIPTION

The PCT is a highly scalable performance monitoring tool built on dynamic

instrumentation technology — the Dynamic Probe Class Library (DPCL). Using the

PCT, you can collect:

v MPI and user event traces for eventual analysis by either:

– Jumpshot (a public-domain tool developed at Argonne National Lab).

or

– the utestats utility provided as part of the PE Benchmarker Toolset.

Since the MPI and user trace information will be output as standard AIX trace

files, we have also supplied, as part of the PE Benchmarker tool set, several

utilities for converting the AIX trace files created by the PCT into a format

readable by Jumpshot and the utestats utility.

v Hardware and operating system profiles for playback within the Performance

Visualization Tool (as invoked by the pvt command).

– IBM System p5 counter architecture enforces coupling of events to counters.

Events can only be counted in specific groups. The following PMAPI hardware

counter groups are supported: 0, 7, 8, 10, 36, 40, 45, 46, 47, 48, 49, 50, 51,

52, 53, 54, 55, 78. 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 128, 129,

130, 131, 132, 133, 134, 135, and 136.

If you are using IBM System p5 575 (POWER5+) servers, the following

hardware counter groups are supported: 0, 7, 8, 11, 37, 41, 44, 46, 47, 48,

49, 51, 52, 53, 54, 55, 56, 57, 58, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,

92, 93, 126, 127, 129, 133, 134, 135, 136, 137, 138, 139, 140, and 141.

– Users of System p5 hardware will only be able to select event groups to

count, as opposed to individual events. A counter grouping is a set of events

that can be simultaneously counted in a set of counters on a System p5

pct

84 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|
|
|
|

server. System p5 architecture contains 6 hardware counters, two of which

are dedicated to specific events, and the other four events specific to the

grouping.

v Communication counts

v Profiling data for OpenMP constructs

The PCT can be run in either its graphical-user-interface mode, or, if the -c flag is

specified, its command-line mode. The PCT’s graphical-user-interface is built on top

of its command-line interface; in other words, your manipulations of the

graphical-user-interface are translated by the tool into pct subcommands. These

subcommands are issued, and the information returned is used to update the

graphical-user-interface. The pct subcommands that result from your interface

interactions are displayed in an information area of the PCT’s Main Window.

When running in command-line mode, you can optionally have the PCT read its

commands from a script file. You can specify the script file using the -s option when

issuing the pct command, or you can use the run subcommand.

The pct command’s subcommands (for controlling the PCT in command-line mode)

are listed alphabetically under “Subcommands of the pct command” on page 86.

EXAMPLES

To start the PCT in graphical-user-interface mode:

pct

To start the PCT in command-line mode:

pct -c

To start the PCT in command-line mode, and read commands from the script file

myscript.cmd.

pct -c -s myscript.cmd

RELATED INFORMATION

Commands: uteconvert(1), pvt(1), slogmerge(1), utemerge(1), utestats(1)

Refer to traceTOslog2 documentation at

 http://www-unix.mcs.anl.gov/perfvis/download/index.htm

pct

Appendix A. Parallel environment tools commands 85

Subcommands of the pct command

There are a number of subcommands that are available when using the PCT in

command line mode. This includes subcommands for connecting to existing

applications, terminating processes, performing actions on groups, loading

applications, and so on. For information on the PCT command, see “pct” on page

84.

block subcommand (of the pct command)

block [task task_list | group task_group_name]

{file ″regular_expression″[,″regular_expression″] |

fileid file_identifier[,file_identifier]}

″regular_expression_to_match_block″

The block subcommand lists, for one or more tasks, the line numbers of blocks

where instrumentation can be set in the source files that match the specified regular

expression or file identifier.

By default, the block subcommand applies to the current task group. The default

can be overridden by specifying a task list or task group name.

The blocks are listed by this subcommand as a table with column headings for task

identifier, file identifier, file name, block identifier, block index, and starting line

number.

task task_list

Specifies the connected POE tasks containing the source file whose blocks

you want to list. The tasks in the POE application can be specified by listing

individual values separated by commas, by giving a range of tasks using a

colon to separate the ends of the range, by giving a range and increment

using colons to separate the range and increment values, or by a

combination of these specifications.

group task_group_name

Specifies the name of a task group. Refer to the group subcommand for

information on creating task groups.

file ″regular_expression″[,″regular_expression″]...

Specifies, using one or more regular expressions, the files whose blocks

you want to list. The regular expression must be enclosed in quotes.

fileid file_identifier[,file_identifier]...

Specifies, using one or more file identifiers as returned by the file

subcommand, the file(s) you wish to list.

″regular_expression_to_match_block_name″

Specifies a regular expression enclosed in quotation marks that identifies

the block names to list. A block name has the form

!block@mmmmmm:nnnnnn, such as init!block@000100:000110 where

mmmmmm and nnnnnn are the starting and ending line number for a block.

Matching is performed using rules of AIX file name pattern match. An ″init*″

will match all blocks that have functions starting from ’init’ in the given file

(or fileid) list.

 A set of nested blocks may have the same starting line number, the same ending

line number, or both. This may occur for a number of reasons. The first is that the

application writer may have used a one line macro which expands to source code

pct

86 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|
|
|
|
|

with nested braces all on one line. Blocks may also have the same starting or

ending line number because the compiler did not generate code between individual

blocks, and so the starting or ending address is shared by multiple blocks.

In cases where blocks have the same starting or ending line number, an additional

level of qualification is needed to identify a specific block. In this case, a line

number specification will have a sequential number appended to it to identify each

unique block. For instance, a block label could look like

func!block@000100:000105.1.

This form of block label will be used anywhere a block label is accepted.

For example, to list the blocks in file calc.c function sum

pct> block task 0 file calc.c “sum!*”

#include <stdio.h>

int totals[10];

int nums[10];

void sum();

int main(int argc, char *argv[])

{

 if (argc == 1) {

 sum();

 }

}

void sum()

{

 int i;

 int j;

 for (i = 0; i < 10; i++) {

 nums[i] = i;

 for (j = 0; j < i; j++) {

 totals[j] = totals[j] + i;

 }

 }

 for (i = 0; i < 10; i++) {

 if (totals[i] % 2) {

 printf("Totals[%d] is odd: %d\n", i, totals[i]);

 }

 }

}

--

Tid File Id Block Id File Name Block Name

--- ------- -------- --------- -----------------------

0 1 0 calc.c sum!block@000019:000021

0 1 1 calc.c sum!block@000021:000021

0 1 2 calc.c sum!block@000025:000026

0 1 3 calc.c sum!block@000026:000026

commcount add subcommand (of the pct command)

commcount add [task task_list | group task_group_name]

{{commname comm_type_name | commid comm_type_identifier}

to {file ″regular_expression″[,″regular_expression″]... |

fileid file_identifier[,file_identifier]...}

pct

Appendix A. Parallel environment tools commands 87

[function ″regular_expression″[,″regular_expression″]...|

funcid function_identifier[,function_identifier...]]

{block block_name[,block_name] | blockid block_ident[,block_ident]}}

The commcount add subcommand adds one or more probes to collect hardware

and operating system profile information. You cannot use this subcommand, or any

of the commcount subcommands, unless you have specified that you are

collecting communications profile data. To specify that you are collecting profile

data, issue the select subcommand with its commcount clause:

select commcount

If you add multiple commcount probes, be aware that they are considered a single

set of probes. When removing commcount probes using the commcount remove

subcommand, you will not be able to remove individual probes. Instead, you’ll have

to remove the entire set of probes.

By default, this subcommand will add the probe(s) to the tasks in the current task

group (as previously defined by the group subcommand). You can override this

default, however, by specifying a task list or task group name when you issue the

commcount add subcommand. Be aware, however, that the set of tasks cannot

include different executables in an MPMD application. For example, if an MPMD

application consists of executables a.out and b.out, then this command cannot be

applied to a task group that contains both a.out and b.out tasks.

task task_list

Specifies the connected POE tasks to which you want to add the

commcount probes. The tasks in the POE application can be specified by

listing individual values separated by commas (1,3,8,9), by giving a range of

tasks using a colon to separate the ends of the range (12:15 refers to tasks

12, 13, 14, and 15), by giving a range and increment value using colons to

separate the range and increment values (20:26:2 refers to tasks 20, 22,

24, and 26), or by using a combination of these (12:18,22,30).

group task_group_name

Specifies the name of a task group. Refer to the group subcommand for

information on creating task groups.

commname comm_type_name

This parameter expects an operand of either:

v add

v mpi_count

v lapi_count

as returned by the following subcommand:

pct> commcount show probetypes

commid commid_type_identifier

This parameter expects an operand matching the probetype id returned by

the following subcommand:

pct> commcount show probetypes

file ″regular_expression″[,″regular_expression″]...

Specifies, using one or more regular expressions (file name substitution

patterns), the file(s) you wish to instrument with commcount probes. The

regular expressions must be enclosed in quotation marks.

pct

88 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

fileid file_identifier[,file_identifier]...

Specifies, using one or more file identifiers as returned by the file

subcommand, the file(s) you wish to instrument with commcount probes.

function ″regular_expression″[,″regular_expression″]...

Specifies, using one or more regular expressions, the functions you wish to

instrument with the commcount probes. The regular expression must be

enclosed in quotation marks.

funcid function_identifier[,function_identifier]...

Specifies, using one or more function identifiers as returned by the function

subcommand, the functions you wish to instrument with the commcount

probes.

block block_name[,block_name]

Specifies one or more block names where commcount probes are to be

added. If this parameter is specified, then either the file or fileid

parameters must be specified. The combination of file or fileid keywords

and block or blockid keywords must resolve to a single file.

blockid block_ident[,block_ident]

Specifies one or more block identifiers, as identified by the block

subcommand, where instrumentation is to be set. If this parameter is

specified, then either the file or fileid parameters must be specified. The

combination of file or fileid keywords and block or blockid keywords must

resolve to a single file.

For example, to add a commcount probe to collect wall clock data for the current

task group:

pct> commcount add profname wclock to fileid 5 funcid 3

To add a commcount probe to collect wall clock data, and hardware data using

counter group 2:

pct> commcount add profname wclock profname hwcount groupid 2 to fileid 3

commcount remove subcommand (of the pct command)

commcount remove probe probe_index

The commcount remove subcommand removes the commcount probe set

specified by the supplied probe_index. A commcount probe set consists of one or

more probes as previously installed by the commcount add subcommand. An

installed commcount probe’s probe_index can be ascertained by issuing the

commcount show subcommand with its probes clause as in:

pct> commcount show probes

probe probe_index

Specifies, using a probe index, the commcount probe set to be removed.

For example, to remove the commcount probe set whose index is 3:

pct> commcount remove probe 3

commcount set mode subcommand (of the pct command)

commcount set mode { pthread | openmp }

pct

Appendix A. Parallel environment tools commands 89

The commcount set mode parameters determine the type of thread for which data

is recorded in the netcdf file.

pthread

Data will always be reported using the pthread id, even when the

instrumentation point resides within an OpenMP parallel region.

openmp

Data will be reported using the OpenMP thread id when the instrumentation

point resides in an OpenMP parallel region and by pthread id when the

instrumentation point does not reside within an OpenMP parallel region.

commcount set path subcommand (of the pct command)

commcount set path ″path_name/output_file_base_name″

The commcount set path subcommand specifies the output location and base

name for the commcount data files generated by commcount probes that you install

using the commcount add subcommand.

″path_name/output_file_base_name″

specifies a relative or full path to the desired location for the commcount

output files, followed by the output file base name. The base name is

needed because the data collected by the PCT will be saved as a file on

each host machine where a connected process with probes is running. The

file name will consist of the base name you supply followed by a

node-specific suffix supplied by the PCT. If a relative path is specified, note

that the location will be relative to the directory where you started the PCT.

 Note that if you specify only an output file base name, you may do so

without quotes. If you specify both a path name and output file base name,

you must surround the entire value in double quotes.

For example, to specify the relative path commcount as the location for commcount

output files and output as the base name:

pct> commcount set path "commcount/output"

commcount show subcommand (of the pct command)

commcount show {probes | probetypes | path | mode}

The commcount show subcommand lists, depending on the clause you specify,

either the currently installed commcount probes, the list of commcount probe types

that you can install, the options for a probetype, or the commcount file output

location.

probes

Specifies that the commcount show subcommand should list the currently

installed commcount probes (including the probe index). The probe index

information is needed when removing a commcount probe using the

commcount remove subcommand.

probetypes

Specifies that the commcount show subcommand should list the available

probe types you can add using the commcount add subcommand.

path Specifies that you want the commcount show subcommand to return the

commcount file output location and base name as set by the commcount

set path subcommand.

pct

90 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

mode Specifies that the commcount show subcommand returns the current

mode, such as openmp or pthread.

For example, to list the installed commcount probes:

pct> commcount show probes

To list available commcount probe types:

pct> commcount show probetypes

Comm Id Comm Name Description

------- --------- ----------------

0 all both mpi and lapi message byte counts

1 mpi_count mpi message byte count

2 lapi_count lapi message byte count

pct>

comment subcommand (of the pct command)

[comment-string]

The comment subcommand is intended for use within script files you write, and is

not intended for interactive command-line sessions. Essentially, the # (pound sign)

character instructs the PCT to ignore the rest of the line.

comment-string

Is any comment you want to add to the file.

 For example, the following PCT script file contains three comment lines to explain

the purpose of the script:

This example uses the ’chaotic’ application from the DPCL samples.

The script loads a four-way chaotic application, inserts probes,

starts the application, and then waits for the application to complete

load poe exec /home/user/chaotic poeargs "-procs 4"

select trace

trace set path "/scratch/trace_out"

trace add mpiid 0 to file "chaotic.f"

start

wait

connect subcommand (of the pct command)

connect [{pid process_id | poe pid poe_process_id} | task task_list |

group task_group_name]

The connect subcommand connects the PCT to an existing application. Using this

subcommand, you can connect to a single application process, or the controlling,

″home node″ process in a POE application. Once you are connected to a

controlling POE home node process, you can reissue this subcommand to connect

to one or more of the POE application’s tasks.

pid process_id

Specifies the process id of a single application process to connect.

poe pid poe_process_id

Indicates that you are connecting a POE process, and specifies the process

id of the POE home node process (the executing instance of the poe

command). Only the controlling POE process is connected. To connect to

one or more of the POE application’s tasks, reissue the connect

subcommand.

pct

Appendix A. Parallel environment tools commands 91

task task_list

Specifies a list of POE tasks to connect. The tasks in the POE application

can be specified by listing individual values separated by commas (1,3,8,9),

by giving a range of tasks using a colon to separate the ends of the range

(12:15 refer to tasks 12, 13, 14, and 15), by giving a range and increment

value using colons to separate the range and increment values (20:26:2

refers to tasks 20, 22, 24, and 26), or by using a combination of these

(12:18,22,30).

group task_group_name

Specifies the name of a task group. To connect to all tasks in a POE

application, you can specify the task group all, which will have been created

by the PCT when you connected to the controlling, home node, POE

process. Refer to the group subcommand for information on creating task

groups.

 For example, to connect to the application process whose AIX process ID is 12345:

pct> connect pid 12345

To connect to the POE ″home node″ process whose AIX process ID is 12345:

pct> connect poe pid 12345

The preceding example connects to just the controlling, home node, process in a

POE application. To now connect to all of the tasks in the POE application:

pct> connect group all

destroy subcommand (of the pct command)

destroy [task task_list | group task_group_name]

The destroy subcommand terminates execution of one or more connected

processes. By default, the tasks in the current task group (as previously defined by

the group subcommand) are the ones terminated. You can override this default,

however, by specifying a task_list or task_group_name when you issue the destroy

subcommand.

When working with a POE application, be aware that terminating any process of the

application will cause POE to terminate all of the application’s processes. This

termination of all processes is a function of POE, not of the PCT. For more

information, refer to IBM Parallel Environment: Operation and Use, Volume 1.

task task_list

Specifies the connected tasks to be terminated. The tasks in the POE

application can be specified by listing individual values separated by

commas (1,3,8,9), by giving a range of tasks using a colon to separate the

ends of the range (12:15 refer to tasks 12, 13, 14, and 15), by giving a

range and increment value using colons to separate the range and

increment values (20:26:2 refers to tasks 20, 22, 24, and 26), or by using a

combination of these (12:18,22,30).

group task_group_name

Specifies the name of a task group. Refer to the group subcommand for

information on creating task groups.

For example, to terminate execution of the tasks in the current task group:

pct> destroy

pct

92 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

To terminate task 8:

pct> destroy task 8

To terminate the tasks in task group connected:

pct> destroy group connected

disconnect subcommand (of the pct command)

disconnect [task task_list | group task_group_name]

The disconnect subcommand disconnects the PCT from one or more connected

processes. Disconnecting from a process removes any performance collection

probes from the process. Disconnecting from a process does not terminate the

process; the process will continue to run. Once a process is disconnected, the PCT

will no longer be able to control execution of, or instrument, the process. By default,

the tasks in the current task group (as previously defined by the group

subcommand) are the ones that are disconnected. You can override this default,

however, by specifying a task list or task group name when you issue the

disconnect subcommand.

task task_list

Specifies the connected POE tasks to be disconnected. The tasks in the

POE application can be specified by listing individual values separated by

commas (1,3,8,9), by giving a range of tasks using a colon to separate the

ends of the range (12:15 refers to tasks 12, 13, 14, and 15), by giving a

range and increment value using colons to separate the range and

increment values (20:26:2 refers to tasks 20, 22, 24, and 26), or by using a

combination of these (12:18,22,30).

group task_group_name

Specifies the name of a task group. Refer to the group subcommand for

information on creating task groups.

For example, to disconnect from the tasks in the current task group:

pct> disconnect

To disconnect from task 8:

pct> disconnect task 8

To disconnect from the tasks in task group connected:

pct> disconnect group connected

exit subcommand (of the pct command)

exit [destroy]

The exit subcommand exits the PCT. If you loaded the target application, its

process(es) will also be terminated. If you merely connected to the target

application, the process(es) will continue to run unless you use the destroy clause

to explicitly instruct the PCT to kill the connected processes. Since terminating any

process of the POE application will cause POE to terminate all of the POE

application’s processes, the destroy clause effectively terminates the entire POE

application.

pct

Appendix A. Parallel environment tools commands 93

For example, to exit the PCT, but allow all of its connected processes to continue

running:

pct> exit

To exit the PCT and terminate the connected target application processes:

pct> exit destroy

file subcommand (of the pct command)

file [task task_list | group task_group_name] ″regular_expression″

The file subcommand lists, for one or more tasks, any associated source file names

that match a regular expression that you supply. By default, this subcommand

applies to the current task group (as previously defined by the group

subcommand). You can override this default, however, by specifying a task list or

task group name when you issue the file subcommand.

The files are listed by this subcommand as a table with column headings for the

task identifier, file identifier, file name, and, if available, the path.

The file identifiers are determined by sorting the files alphabetically and numbering

them starting from 0. The path will be shown only if the file path information was

supplied when you compiled a file.

task task_list

Specifies the connected POE tasks whose source file names you want to

list. The tasks in the POE application can be specified by listing individual

values separated by commas (1,3,8,9), by giving a range of tasks using a

colon to separate the ends of the range (12:15 refers to tasks 12, 13, 14,

and 15), by giving a range and increment value using colons to separate

the range and increment values (20:26:2 refers to tasks 20, 22, 24, and 26),

or by using a combination of these (12:18,22,30).

group task_group_name

Specifies the name of a task group. Refer to the group subcommand for

information on creating task groups.

″regular_expression″

An AIX regular expression (file name substitution pattern) enclosed in

quotation marks that identifies the files to list. The file subcommand will

filter the list of file names using this regular expression; only file names that

match this regular expression pattern will be listed.

For example, to list all the files in the current task group:

pct> file "*"

Tid File Id File Name Path

--- ------- --------- -------------

0 0 bar.c ../../lib/src

0 1 foo1.c ../../lib/src

0 2 foo2.c ../src

pct>

To list only the files in task 0 that begin with the letter ″f″

pct> file task 0 "f*"

Tid File Id File Name Path

pct

94 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

--- ------- --------- -------------

0 1 foo1.c ../../lib/src

0 2 foo2.c ../src

pct>

find subcommand (of the pct command)

find [task task_list | group task_group_name]

function ″regular_expression_to_match_function_name″

The find subcommand lists all function names that match a regular expression

pattern that you supply. This subcommand is intended for situations when you wish

to instrument a particular function, but do not know which file contains the function.

The function names found are listed by this subcommand as a table with column

headings for task identifier, file identifier, file name, and function name.

task task_list

Specifies the connected POE tasks whose source files you want to search.

The tasks in the POE application can be specified by listing individual

values separated by commas (1,3,8,9), by giving a range of tasks using a

colon to separate the ends of the range (12:15 refers to tasks 12, 13, 14,

and 15), by giving a range and increment value using colons to separate

the range and increment values (20:26:2 refers to tasks 20, 22, 24, and 26),

or by using a combination of these (12:18,22,30).

group task_group_name

Specifies the name of a task group. Refer to the group subcommand for

information on creating task groups.

function ″regular_expression_to_match_function_name″

An AIX regular expression (file name substitution pattern) enclosed in

quotation marks that identifies the functions to locate. Matching is

performed using rules of AIX file name pattern matching. The find

subcommand will filter the list of function names using this regular

expression; only function names that match this regular expression pattern

will be listed.

For example, to list all the functions in task 0 that match the regular expression

comp*:

pct> find task 0 function "comp*"

Tid File Id File Name Function Name

--- ------- --------- -------------

0 23 main.c compute

0 23 main.c compare

0 25 sort.c compare2

pct>

function subcommand (of the pct command)

function [task task_list | group task_group_name]

{file ″regular_expression″[,″regular_expression″] |

 fileid file_identifier[,file_identifier]}...

″regular_expression_to_match_function_name″

The function subcommand lists, for one or more tasks, the names of the functions

contained in a source file that match a regular expression search pattern you

pct

Appendix A. Parallel environment tools commands 95

supply. The file whose functions are listed can be specified as a file identifier or as

a regular expression that matches the file name. The file information can be

ascertained by the file subcommand, or, if you are unsure which file the function is

located in, the find subcommand. By default, this subcommand applies to the

current task group (as previously defined by the group subcommand). You can

override this default, however, by specifying a task list or task group name when

you issue the function subcommand.

The function names are listed by this subcommand as a table with column headings

for task identifier, file identifier, function identifier, file name, and function name.

The function identifiers are determined by sorting the functions contained in a file

alphabetically starting from 0. Each file’s functions are numbered sequentially

starting from 0.

task task_list

Specifies the connected POE tasks containing the source files whose

functions you want to list. The tasks in the POE application can be specified

by listing individual values separated by commas (1,3,8,9), by giving a

range of tasks using a colon to separate the ends of the range (12:15 refers

to tasks 12, 13, 14, and 15), by giving a range and increment value using

colons to separate the range and increment values (20:26:2 refers to tasks

20, 22, 24, and 26), or by using a combination of these (12:18,22,30).

group task_group_name

Specifies the name of a task group. Refer to the group subcommand for

information on creating task groups.

file ″regular_expression″[,″regular_expression″]

Specifies, using one or more regular expression patterns, the file(s) whose

functions you want to list. The regular expression patterns must be

contained in quotation marks.

fileid file_identifier[,file_identifier]

Specifies, using one or more file identifiers as returned by the file

subcommand, the file(s) whose functions you want to list.

″regular_expression_to_match_function_name″

A regular expression enclosed in quotation marks that identifies the function

names to list. Matching is performed using rules of AIX file name pattern

matching. The function subcommand will filter the list of function names

using this expression; only function names (for the tasks/file indicated) that

match the regular expression will be listed.

For example, to list all the functions in the file ″bar.c″ in task 0:

pct> function task 0 file "bar.c" "*"

Tid File Id Function Id File Name Function Name

--- ------- ----------- --------- -------------

0 1 0 bar.c func0

0 1 1 bar.c func1

pct>

To list all the functions in the file ″bar.c″ (using the file identifier) in task 0:

pct> function task 0 fileid 1 "*"

Tid File Id Function Id File Name Function Name

pct

96 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

--- ------- ----------- --------- -------------

0 1 0 bar.c func0

0 1 1 bar.c func1

pct>

To list, for task 0, all of the functions in files beginning with ″b″ or ″d″:

pct> function task 0 file "b*", "d*" "*"

Tid File Id Function Id File Name Function Name

--- ------- ----------- --------- -------------

0 3 0 bar.c func0

0 3 1 bar.c func1

0 3 2 bar2.c func_xyz

0 4 0 bar2.c calc

0 4 1 bar2.c do_math

0 4 2 bar2.c sum

pct>

group subcommand (of the pct command)

group default task_group_name

group add task_group_name task_list

group delete task_group_name [task_list]

The group subcommand can perform three distinct actions related to task groups:

v Using the default action of the group command:

group default task_group_name

you can set the command context on a particular task group. When you do this,

the task group you specify becomes the current task group; certain other

subcommands that you issue (such as the file, function, and point

subcommands) will, by default, apply only to the tasks in the current task group.

v Using the add action of the group subcommand:

group add task_group_name task_list

you can create a new task group, or add tasks to an existing task group.

v Using the delete action of the group subcommand:

group delete task_group_name [task_list]

you can delete, or delete selected tasks from, a task group. If a task list is

specified, these tasks are removed from the task group; otherwise, the entire

task group is deleted.

In addition to any task groups you create using the group subcommand, note that

there are two task groups that are created automatically by the PCT when you

issue either the load or connect subcommands. These automatically-created task

groups are named all and connected. The all task group contains all tasks in the

current application, while the connected task group contains the set of tasks to

which the PCT is connected.

task_group_name

refers to the name of the task group that, depending on the particular

group subcommand action you are executing, you want to:

v make the default task group

v create or add tasks to

pct

Appendix A. Parallel environment tools commands 97

v delete or remove tasks from

task_list

Refers to the list of tasks that, depending on the particular group

subcommand action you are executing, you want to either add to, or delete

from, the task group. The tasks can be specified by listing individual values

separated by commas (1,3,8,9), by giving a range of tasks using a colon to

separate the ends of the range (12:15 refers to tasks 12, 13, 14, and 15),

by giving a range and increment value using colons to separate the range

and increment values (20:26:2 refers to tasks 20, 22, 24, and 26), or by

using a combination of these (12:18,22,30).

For example, to create a task group master consisting of task 0, and a task group

workers consisting of tasks 1 through 20.

pct> group add master 0

pct> group add workers 1:20

To add tasks 21 through 30 to the task group workers:

pct> group add workers 21:30

To make the group workers the default task group:

pct> group default workers

To remove tasks 21 through 30 from the task group workers.

pct> group delete workers 21:30

To delete the task group workers:

pct> group delete workers

help subcommand (of the pct command)

help [command_name]

The help subcommand can either list all of the PCT’s subcommands, or else return

the syntax of a particular subcommand.

command_name

refers to the name of the PCT subcommand you want help on.

For example, to get a listing of all of the PCT’s subcommands:

pct> help

To get the syntax of the load subcommand:

pct> help load

list subcommand (of the pct command)

list {[task task_list | group task_group_name]

[file ″regular_expression″ [,″regular_expression″]... |

fileid file_identifier[,file_identifier]...] [line line_number_range]}

list next

 The list subcommand returns the contents of a file. The first time you issue this

subcommand, you should specify a file using the file or fileid clause. Doing this will

pct

98 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

list the entire file’s contents. To list only a portion of the file’s contents, specify a line

number range using the line clause. To minimize typing, the PCT records the

number of the last source code line displayed; issuing the list next subcommand

will display the next few lines of the source code. By default, this form of the

subcommand applies to the current task group (as previously defined by the group

subcommand). You can override this default, however, by specifying a task list or

task group name when you issue the list subcommand.

task task_list

Specifies the connected POE tasks containing the source files whose

contents you want to list. The tasks in the POE application can be specified

by listing individual values separated by commas (1,3,8,9), by giving a

range of tasks using a colon to separate the ends of the range (12:15 refers

to tasks 12, 13, 14, and 15), by giving a range and increment value using

colons to separate the range and increment values (20:26:2 refers to tasks

20, 22, 24, and 26), or by using a combination of these (12:18,22,30).

group task_group_name

Specifies the name of a task group. Refer to the group subcommand for

information on creating task groups.

file ″regular expression″ [,″regular expression″]...

Specifies, using one or more regular expressions, the file whose contents

you want to list. Only the first file that matches the regular expression(s) will

be listed. If this file cannot be located, an error will be returned, regardless

of whether a subsequent file match could have been made.

fileid file_identifier[,file_identifier]...

Specifies, using one or more file identifiers as returned by the file

subcommand, the file(s) whose contents you want to list.

line line_number_range

The line number range of the source code you want to list. Use a colon to

separate the ends of the range (for example 1:20).

next displays the next few lines of source code after the range previously

returned by the list subcommand.

 For example, to list lines 1 through 20 of the source file bar.c:

pct> list file "bar.c" line 1:20

To then list the next few lines in bar.c:

pct> list next

load subcommand (of the pct command)

load {{[poe] exec executable_name } | {poe

[mpmdcmd path_to_poe_commands_file] [poeargs ″poe_arguments_string″]}

[args ″program_arguments_string″] [stdout standard_out_file_name]

[stderr standard_error_file_name] [stdin standard_input_file_name]}

The load subcommand loads a serial or POE application for execution. Once an

application is loaded, you can instrument it with probes, or control its execution

using the start, suspend, resume, and destroy subcommands. The load

subcommand is intended for applications that are not already executing; to connect

to applications that are already executing, use the connect subcommand. The poe

clause indicates that the application is a POE application; if not specified, the load

subcommand assumes you are loading a serial application. The load subcommand

pct

Appendix A. Parallel environment tools commands 99

loads the application into memory in a ″stopped state″ with execution suspended at

its first executable instruction. You can start execution of the application using the

start subcommand.

poe Specifies that you are loading a POE program.

exec executable_name

Specifies the name of the executable file. If you are loading a POE

application, you must also include the keyword poe on the command line.

mpmdcmd path_to_poe_commands_file

Specifies that the POE program you’re loading follows the Multiple Program

Multiple Data (MPMD) model and indicates the path to the POE commands

file listing the executable programs to run. For more information on POE

commands files, refer to the manual IBM Parallel Environment: Operation

and Use, Volume 1.

poeargs ″poe_arguments_string″

Specifies command-line arguments that are passed to the poe command to

control various aspects of the Parallel Operating Environment. For a

complete listing of the POE arguments you can supply, refer to the manual

IBM Parallel Environment: Operation and Use, Volume 1. The POE

arguments should be provided as a string delimited by double quotation

marks. Embedded quotation marks can be included in the string if each

mark is preceded by an escape character (\). Embedded escape characters

may also be included if they are preceded by an additional escape

character.

args ″program_arguments_string″

Specifies command-line arguments that are passed to the application. Note

that these are not POE arguments, which are instead specified by using the

poeargs clause. The program arguments should be provided as a string

delimited by double quotation marks. Embedded quotation marks can be

included in the string if each mark is preceded by an escape character (\).

Embedded escape characters may also be included if they are preceded by

an additional escape character.

stdout standard_out_file_name

Redirects the target application’s standard output to the file specified.

stderr standard_error_file_name

Redirects the target application’s standard error to the file specified.

stdin standard_input_file_name

Reads the target application’s standard input from a file.

For example, the following command loads the serial executable foo and passes it

the argument string ″a b c″:

pct> load exec /u/example/bin/foo args "a b c"

The following command loads the POE executable parallel_foo and passes it POE

arguments:

pct> load poe exec /u/example/bin/parallel_foo poeargs \

"-procs 4 -hfile /tmp/host.list"

The following command loads an MPMD POE program. The executable files to load

are listed in the POE commands file /u/example/bin/foo.cmds:

pct> load poe mpmdcmd /u/example/bin/foo.cmds poeargs \

"-procs 3 -hfile /tmp/host.list"

pct

100 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

openmp add subcommand (of the pct command)

openmp add [task task_list | group task_group_name]

{ompname omp_type_name | ompid omp_type_identifier}...

to {file ″regular_expression″[,″regular_expression″]... |

 fileid file_identifier[,file_identifier]...}

[function ″regular_expression″[,″regular_expression″]...|

funcid function_identifier[,function_identifier...]]

The openmp add subcommand adds one or more probes to collect OpenMP

related information. You cannot use this subcommand, or any of the openmp

subcommands, unless you have specified that you are collecting OpenMP data. To

specify that you are collecting OpenMP data, issue the select subcommand with its

openmp clause:

select openmp

If you add multiple openmp probes, be aware that they are considered a single set

of probes. When removing openmp probes using the openmp remove

subcommand, you will not be able to remove individual probes. Instead, you’ll have

to remove the entire set of probes.

By default, this subcommand will add probe(s) to the tasks in the current task group

(as previously defined by the group subcommand). You can override this default,

however, by specifying a task list or task group name when you issue the openmp

add subcommand. Be aware, however, that the set of tasks cannot include different

executables in a MPMD application. For example, if a MPMD application consists of

executables a.out and b.out, then this command cannot be applied to a task group

that contains both a.out and b.out tasks.

task task_list

Specifies the connected POE tasks to which you want to add the openmp

probes. The tasks in the POE application can be specified by listing

individual values separated by commas (1,3,8,9), by giving a range of tasks

using a colon to separate the ends of range (12:15 refers to tasks 12,13,14

and 15), by giving a range and increment value using colons to separate

the range and increment value (20:26:2 refers to tasks 20,22,24, and 26),

or by using a combination of these (12:18,22,30).

group task_group_name

Specifies the name of a task group. Refer to the group subcommand for

information on creating task groups.

ompname omp_type_name

Specifies, using a probe type name, a openmp probe type to add. To list

the openmp probe type names, use the openmp show subcommand (with

the probetypes clause specified):

pct> openmp show probetypes

ompid omp_type_identifier

Specifies, using a probe type identifier, an openmp probe type to add. To

list the openmp probe type identifiers, use the openmp show subcommand

(with the probetypes clause specified):

pct> openmp show probetypes

file ″regular_expression″[,″regular_expression″]...

Specifies, using one or more regular expressions (file name substitution

pct

Appendix A. Parallel environment tools commands 101

patterns), the file(s) you wish to instrument with openmp probes. The

regular expressions must be enclosed in quotation marks.

fileid file_identifier[,file_identifier]...

Specifies, using one or more file identifiers as returned by the file

subcommand, the file(s) you wish to instrument with openmp probes.

function ″regular_expression″[,″regular_expression″]...

Specifies, using one or more regular expressions, the functions you wish to

instrument with the openmp probes. The regular expression must be

enclosed in quotation marks.

funcid function_identifier[,function_identifier]...

Specifies, using one or more function identifiers as returned by the function

subcommand, the functions you wish to instrument with openmp probes.

The openmp add subcommand inserts one or more probes to the source. For

example:

pct> openmp add ompname all to file “foo.c”

adds a probe that collects all openMP activities in the file “foo.c”.

The above command inserts probes to all the functions that contains the OpenMP

calls in the file ‘foo.c’. The probes include the entry/exit on the function that contains

OpenMP calls, the before/after calls to the OpenMP locking functions, the

before/after calls to the setup/barrier functions, and the entry/exit on the parallel

regions. If there is no OpenMP calls in the file “foo.c”, then no probe will be added.

The user should use a general purpose profiling tool which we also provide, for the

non-OpenMP related activities.

For example:

pct> # generate probes for functions with OpenMP calls

pct> openmp add ompname all to file “foo.c”

pct> openmp add ompname all to file “a*”

pct> openmp add ompname all to file “foo1.c” function “bar*”

The user can query the OpenMP callsites using the openmp callsite subcommand.

The probes will not be added to the source block level. Multiple adds on the same

function is not allowed. That is, if a function is added by previous probes, a

subsequent add of the same function will generate error message and the whole

command will fail.

pct> openmp add ompname all to file “hello.c” function “foo”

pct> openmp add ompname all to file “*”

sesmgr: 2554-445 Some functions are profiled in the probe Id 0,

 duplication is not allowed

openmp callsite subcommand (of the pct command)

openmp callsite [task task_list | group task_group_name]

{file ″regular_expression″[,″regular_expression″]... |

 fileid file_identifier[,file_identifier]...}

[function ″regular_expression″[,″regular_expression″]...|

funcid function_identifier[,function_identifier...]]

The openmp callsite subcommand returns all the OpenMP related callsites for

given file/functions. You cannot use this subcommand, or any of the openmp

pct

102 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

subcommands, unless you have specified that you are collecting OpenMP data. To

specify that you are collecting OpenMP data, issue the select subcommand with its

openmp clause:

select openmp

task task_list

Specifies the connected POE tasks to which you want to list openmp

runtime call site. The tasks in the POE application can be specified by

listing individual values separated by commas (1,3,8,9), by giving a range of

tasks using a colon to separate the ends of the range (12:15 refers to tasks

12,13,14 and 15), by giving a range and increment value using colons to

separate the range and increment value (20:26:2 refers to tasks

20,22,24,and 26), or by using a combination of these (12:18,22,30).

group task_group_name

Specifies the name of a task group. Refer to the group subcommand for

information on creating task groups.

file ″regular_expression″[,″regular_expression″]...

Specifies, using one or more regular expressions (file name substitution

patterns), the file(s) you wish to list OpenMP runtime callsites. The regular

expressions must be enclosed in quotation marks.

fileid ″file_identifier″[,″file_identifier″]...

Specifies, using one or more file identifiers as returned by the file

subcommand, the file(s) you wish to list OpenMP runtime callsites

function ″regular_expression″[,″regular_expression″]...

Specifies, using one or more regular expressions, the functions you wish to

list OpenMP runtime callsites. The regular expression must be enclosed in

quotation marks.

funcid ″function_identifier″[,″function_identifier″]...

Specifies, using one or more function identifiers as returned by the function

subcommand, the functions you wish to list OpenMP runtime callsites.

For example,

pct> openmp callsite file “main.f”

OmpId FileName Function Name Line/Addr Callee

--

3 main.f deltat 01145 Master_TPO

4 main.f deltat 01146 deltat@OL@A

3 main.f initbuf 00790 InitializeRTE

3 main.f initbuf 00790 WSDoSetup_TPO

4 main.f initbuf 00790 initbuf@OL@8

3 main.f initbuf 00855 WSDoSetup_TPO

4 main.f initbuf 00855 initbuf@OL@9

3 main.f initbuf 00904 Barrier_TPO

Note: If the function specified contains ‘@OL’, such as ‘compute@OL@3’ the

returned function name is still the id of the parent function ‘compute’, not the

function name of the ‘compute@OL@3’ itself. The reason is that when we

add probe on the function ‘compute’, we implicitly instrument the function

‘compute@OL’.

Normal returns:

See example above.

Error returns:

pct

Appendix A. Parallel environment tools commands 103

2554-403 Multiple programs detected in the command.

openmp help subcommand (of the pct command)

openmp help [openmp_command_name]

The openmp help subcommand can either list all of the openmp subcommands, or

return the syntax of a particular openmp subcommand. It provides a brief help

message. If no keyword is specified, the help message will be a summary of the

various openmp commands. If a keyword is specified, it may be an openmp

subcommand, such as add, or a keyword which appears in <> in a help message. If

a keyword is specified, then the help text will be explanatory text for that keyword.

You cannot use this subcommand, or any of the openmp subcommands, unless

you have specified that you are collecting OpenMP data. To specify that you are

collecting OpenMP data, issue the select subcommand with its openmp clause

where

openmp_command_name

refers to the name of openmp subcommand you want help on.

The keyword can be a command name or the text listed in the angle brackets ‘< >’.

For example:

pct> openmp help

Command Desc

--

OPENMP ADD [<task_qual>] <omp_opt_lis>TO<point_qual>

...

pct> openmp help task_qual

Command Desc

--- ----

-> TASK <numlist>

-> GROUP groupname

----Either a task or group clause that specifies what tasks

----to execute the command on.

The variables in square brackets ‘[]’ are optional.

openmp remove probe subcommand (of the pct command)

openmp remove probe probe_index

The openmp remove subcommand removes the openmp probe set specified by

the supplied probe_index. An openmp probe set consists of one or more probes as

previously installed by the openmp add subcommand. An installed openmp probe’s

probe_index can be ascertained by the openmp show probe subcommand.

probe probe_index

specifies, using a probe index, the openmp probe set to be removed.

For example,

pct> openmp show probes

Probid Command

pct

104 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

0 openmp add profname all to file “foo.c”

1 openmp add profname all to file “bar.c”

pct> openmp remove probe 1

openmp set path subcommand (of the pct command)

openmp set path “path_name/output_file_base_name”

The openmp set path subcommand specifies the output path for the data files

generated as a result of running the OpenMP profiling tool.

“path_name/output_file_base_name”

specifies a relative or full path to the desired location for the openmp output

files, followed by the output file base name. The base name is needed

because the data collected by the PCT will be saved as a file on each host

machine where a connected process with probes is running. The file name

will consist of the base name you supply followed by a node-specific suffix

supplied by the PCT. If a relative path is specified, note that the location will

be relative to the directory where you started the PCT.

 Note that if you specify only an output file base name, you may do so

without quotes. If you specify both a path name and output file base name,

you must surround the entire value in double quotes.

 Several openmp set path subcommands can be issued and only the last one is

kept for the output. Once the openmp add subcommand is issued, the user can no

longer change the path.

For example:

pct> openmp set path “/home/mydir/xxx”

pct> # change mind

pct> openmp set path “/tmp/xxx”

pct> openmp add profname all to file “foo.c”

pct> openmp set path “/tmp/yyy”

sesmgr:2554-432 Path cannot be changed after add probe

openmp show subcommand (of the pct command)

openmp show {probes | probetypes | path}

The openmp show subcommand lists, depending on the clause you specify, either

the currently installed openmp probes, the list of openmp probe types that you can

install, or the openmp file output location.

probes

Specifies that the openmp show subcommand should list the currently

installed openmp probes (including the probe index). The probe index

information is needed when removing an openmp probe using the openmp

remove subcommand.

probetypes

Specifies that the openmp show subcommand should list the available

probe types you can add using the openmp add subcommand.

path Specifies that you want the openmp show subcommand to return the

openmp file output location and base name as set by the openmp set path

subcommand.

pct

Appendix A. Parallel environment tools commands 105

For example, to list the installed openmp probes:

pct> openmp show probes

To list available openmp probe types:

pct> openmp show probetypes

Omp Id Omp Name Description

----- ------- -----------------

0 all All probes below

1 lock Locking function

2 critical Critical region

3 setup Setup/barrier

4 parallel Parallel regions

5 query OpenMP query functions

point subcommand (of the pct command)

point [task task_list | group task_group_name]

{file ″regular_expression″[,″regular_expression″]... |

fileid file_identifier[,file_identifier]...}

[function ″regular_expression″[,″regular_expression″]... |

funcid function_identifier[,function_identifier]...]

Lists the instrumentation points (at the file or function level) where custom user

markers can be added by the trace add subcommand. You only need to identify

instrumentation points when installing custom user markers using the trace add

subcommand. You do not need the instrumentation point for any other type of data

collection. By default, this subcommand will list the instrumentation points for the

tasks in the current task group (as previously defined by the group subcommand).

You can override this default, however, by specifying a task list or task group name

when you issue the point subcommand. The file or fileid clause specifies the file(s)

whose instrumentation points you want listed. Using the function clause, you can

specify one or more functions whose instrumentation points you want listed.

The point identifiers are determined by numbering the points, starting from 0,

according to their location in each function. The first instrumentation point in the

function is given the identifier 0, the second is given the identifier 1, and so on.

Each function’s instrumentation points are numbered separately starting from 0.

task task_list

Specifies the connected POE tasks whose instrumentation points you want

to list. The tasks in the POE application can be specified by listing individual

values separated by commas (1,3,8,9), by giving a range of tasks using a

colon to separate the ends of the range (12:15 refers to tasks 12, 13, 14,

and 15), by giving a range and increment value using colons to separate

the range and increment values (20:26:2 refers to tasks 20, 22, 24, and 26),

or by using a combination of these (12:18,22,30).

group task_group_name

Specifies the name of a task group. Refer to the group subcommand for

information on creating task groups.

file ″regular_expression″[,″regular_expression″]...

Specifies, using one or more regular expressions (file name substitution

patterns), the file(s) whose instrumentation points you want to list. The

regular expression(s) must be contained in quotation marks.

pct

106 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

fileid file_identifier[,file_identifier]...

specifies, using one or more file identifiers as returned by the file

subcommand, the file(s) whose instrumentation points you want to list.

function ″regular_expression″[,″regular_expression″]...

Specifies, using one or more regular expressions, the function(s) whose

instrumentation points you want to list. This regular expression must be

contained in quotation marks.

funcid function_identifier[,function_identifier]...

Specifies, using one or more function identifiers as returned by the function

subcommand, the function(s) whose instrumentation points you want to list.

For example, to list all the instrumentation points in task 0 for the file bar.c:

pct> point task 0 file "bar.c"

Tid File Id Function Id Point Id Point Type Callee Name Line Number

--- ------- ----------- -------- ---------- ------------ -----------

0 54 0 0 0 61

0 54 0 1 2 printf 61

0 54 0 2 3 printf 61

0 54 0 3 2 MPI_Abort 62

0 54 0 4 3 MPI_Abort 62

0 54 0 5 1 63

0 54 1 0 0 114

0 54 1 1 2 printf 116

0 54 1 2 3 printf 116

0 54 1 3 2 printf 117

0 54 1 4 3 printf 117

0 54 1 5 2 MPI_Recv 120

0 54 1 6 3 MPI_Recv 120

0 54 1 7 2 consume_data 122

0 54 1 8 3 consume_data 122

0 54 1 9 2 printf 126

0 54 1 10 3 printf 126

0 54 1 11 1 130

pct>

profile add subcommand (of the pct command)

profile add [task task_list | group task_group_name]

{{profname profile_type_name | profid profile_type_identifier}

[groupid group_identifier | groupname group_name]}...

to {file ″regular_expression″[,″regular_expression″]... |

fileid file_identifier[,file_identifier]...}

[function ″regular_expression″[,″regular_expression″]...|

funcid function_identifier[,function_identifier...]]

{block block_name[,block_name] | blockid block_ident[,block_ident]}

The profile add subcommand adds one or more probes to collect hardware and

operating system profile information. You cannot use this subcommand, or any of

the profile subcommands, unless you have specified that you are collecting profile

data. To specify that you are collecting profile data, issue the select subcommand

with its profile clause:

select profile

If you add multiple profile probes, be aware that they are considered a single set of

probes. When removing profile probes using the profile remove subcommand, you

will not be able to remove individual probes. Instead, you’ll have to remove the

entire set of probes.

pct

Appendix A. Parallel environment tools commands 107

By default, this subcommand will add the probe(s) to the tasks in the current task

group (as previously defined by the group subcommand). You can override this

default, however, by specifying a task list or task group name when you issue the

profile add subcommand. Be aware, however, that the set of tasks cannot include

different executables in an MPMD application. For example, if an MPMD application

consists of executables a.out and b.out, then this command cannot be applied to a

task group that contains both a.out and b.out tasks.

task task_list

Specifies the connected POE tasks to which you want to add the profile

probes. The tasks in the POE application can be specified by listing

individual values separated by commas (1,3,8,9), by giving a range of tasks

using a colon to separate the ends of the range (12:15 refers to tasks 12,

13, 14, and 15), by giving a range and increment value using colons to

separate the range and increment values (20:26:2 refers to tasks 20, 22,

24, and 26), or by using a combination of these (12:18,22,30).

group task_group_name

Specifies the name of a task group. Refer to the group subcommand for

information on creating task groups.

profname profile_type_name

Specifies, using a probe type name, a profile probe type to add. To list the

profile probe type names, use the profile show subcommand (with its

probetypes clause specified):

pct> profile show probetypes

profid profile_type_identifier

Specifies, using a probe type identifier, a profile probe type to add. To list

the profile probe type identifiers, use the profile show subcommand (with

its probetypes clause specified):

pct> profile show probetypes

groupid group_identifier

If you are collecting hardware counter information, a profile group identifier

indicating the specific hardware counter information you want to collect. To

get a list of the profile groups available for your hardware, use the

command:

pct> profile show probetype hwcount

groupname group_name

If you are collecting hardware counter information, a profile group name

indicating the specific hardware counter information you want to collect. To

get a list of the profile groups available for your hardware, use the

command:

pct> profile show probetype hwcount

file ″regular_expression″[,″regular_expression″]...

Specifies, using one or more regular expressions (file name substitution

patterns), the file(s) you wish to instrument with profile probes. The regular

expressions must be enclosed in quotation marks.

fileid file_identifier[,file_identifier]...

Specifies, using one or more file identifiers as returned by the file

subcommand, the file(s) you wish to instrument with profile probes.

function ″regular_expression″[,″regular_expression″]...

Specifies, using one or more regular expressions, the functions you wish to

instrument with the profile probes. The regular expression must be enclosed

in quotation marks.

pct

108 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

funcid function_identifier[,function_identifier]...

Specifies, using one or more function identifiers as returned by the function

subcommand, the functions you wish to instrument with the profile probes.

block block_name[,block_name]

Specifies one or more block names where profiling probes are to be added.

If this parameter is specified, then either the file or fileid parameter must

be specified. The combination of file or fileid keywords and block or blockid

keywords must resolve to a single file. The source file must be compiled

with the -g option, or in the case of a FORTRAN source file, the -g and

-qdpcl flags. The block name is specified in the same way as the

block_name parameter is specified in the block subcommand. This

parameter is mutually exclusive with the function, funcid, and pointid

parameters.

blockid block_ident[,block_ident]

Specifies the block or range of block identifiers as identified by the block

command. If this parameter is specified, then the file or fileid parameters

must be specified. The combination of file or fileid keywords and block or

blockid keywords must resolve to a single file. The source file must be

compiled with the -g option, or in the case of a FORTRAN source file, the

-g and -qdpcl flags. This parameter is mutually exclusive with the function,

funcid, and pointid parameters.

If the blockid or block keywords are not specified, then probes will only be inserted

at function entry and exit points. Allowing probes to be inserted at all blocks in a

function as a default action is likely to cause excessive overhead in tracing that

function.

For example, to add a profile probe to collect wall clock data for the current task

group:

pct> profile add profname wclock to fileid 5 funcid 3

To add a profile probe to collect wall clock data and hardware data using counter

group 2:

pct> profile add profname wclock profname hwcount groupid 2 to fileid 3

profile help subcommand (of the pct command)

profile help [profile_command_name]

The profile help subcommand can either list all of the PCT’s profile subcommands,

or else return the syntax of a particular profile subcommand. You cannot use this

subcommand, or any of the profile subcommands, unless you have specified that

you are collecting profile data. To specify that you are collecting profile data, issue

the select subcommand with its profile clause: select profile

profile_command_name

refers to the name of the PCT profile subcommand you want help on.

For example, to get a listing of all of the PCT’s

profile subcommands:

pct> profile help

To get the syntax of the profile add subcommand:

pct

Appendix A. Parallel environment tools commands 109

pct> profile help add

profile remove subcommand (of the pct command)

profile remove probe probe_index

The profile remove subcommand removes the profile probe set specified by the

supplied probe_index. A profile probe set consists of one or more probes as

previously installed by the profile add subcommand. An installed profile probe’s

probe_index can be ascertained by the profile show subcommand (with its probes

clause) as in:

pct> profile show probes

probe probe_index

Specifies, using a probe index, the profile probe set to be removed. The

probe index can be ascertained by issuing the profile show subcommand

with its probes clause.

For example, to remove the profile probe set whose index is 3:

pct> profile remove probe 3

profile set subcommand (of the pct command)

profile set {path ″path_name/output_file_base_name″ | [mode ″openmp | pthread″}

path Specifies that you want the profile set subcommand to set the profile file

output location and base name as set by the profile set path

subcommand.

″path_name/output_file_base_name″

a relative or full path to the desired location for the profile output files,

followed by the output file base name. The base name is needed because

the data collected by the PCT will be saved as a file on each host machine

where a connected process with probes is running. The file name will

consist of the base name you supply followed by a node-specific suffix

supplied by the PCT. If a relative path is specified, note that the location will

be relative to the directory where you started the PCT.pct For example, to

specify the relative path profile as the location for profile output files and

output as the base name:

pct> profile set path "profile/output"

mode Specifies that the profile set subcommand sets the current mode, such as

openmp or pthread.

″openmp″

In the openmp mode, the openmp thread id will be recorded in the pvt if the

function is running in an OpenMP parallel region. Note this openmp thread

id will not map back to the pthread id. In the openmp mode, the original

pthread id is still used for the functions outside the parallel region in an

OpenMP application. If the application is not an OpenMP application, the

openmp mode can still be set. The original pthread id will still be displayed

as if the instrumentation is outside the parallel region. Profile set mode may

be issued multiple times as long as a profile add subcommand has not

been issued. The last issued profile set mode subcommand will determine

the mode setting. Once a profile add subcommand has been issued,

profile set mode may not be issued again.

pct

110 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

″pthread″

In the pthread mode, the pthread id is recorded even in the parallel region

of an OpenMP application.

For example, to specify the relative path profile as the location for profile output files

and output as the base name:

pct> profile set path "profile/output"

For example,

pct> profile set mode openmp

Error Returns:

2554-445 mode can only be changed before the first add command

profile show subcommand (of the pct command)

profile show {probes | probetypes | probetype probe_type_name | path|mode}

The profile show subcommand lists, depending on the clause you specify, either

the currently installed profile probes, the list of profile probe types that you can

install, the options for a probetype, or the profile file output location.

probes

Specifies that the profile show subcommand should list the currently

installed profile probes (including the probe index). The probe index

information is needed when removing a profile probe using the profile

remove subcommand.

probetypes

Specifies that the profile show subcommand should list the available probe

types you can add using the profile add subcommand.

probetype probe_type_name

Specifies that the subcommand should list the options for the specified

probe type. Currently, only the hardware counter probe type has options.

path Specifies that you want the profile show subcommand to return the profile

file output location and base name as set by the profile set path

subcommand.

mode Specifies that the profile show subcommand returns the current mode,

such as openmp or pthread.

For example, to list the installed profile probes:

pct> profile show probes

To list available profile probe types:

pct> profile show probetypes

Prof Id Prof Name Description

------- --------- ----------------

0 wclock wall clock

1 rusage resource usage

2 hwcount hardware counter

pct>

resume subcommand (of the pct command)

resume [task task_list | group task_group_name]

pct

Appendix A. Parallel environment tools commands 111

The resume subcommand resumes execution of one or more processes that have

previously been suspended by the suspend subcommand. By default, the tasks in

the current task group (as previously defined by the group subcommand) are the

ones that have their execution resumed. You can override this default, however, by

specifying a task list or task group name when you issue the resume subcommand.

task task_list

Specifies the connected POE tasks that you want to resume executing. The

tasks in the POE application can be specified by listing individual values

separated by commas (1,3,8,9), by giving a range of tasks using a colon to

separate the ends of the range (12:15 refers to tasks 12, 13, 14, and 15),

by giving a range and increment value using colons to separate the range

and increment values (20:26:2 refers to tasks 20, 22, 24, and 26), or by

using a combination of these (12:18,22,30).

group task_group_name

Specifies the name of a task group. Refer to the group subcommand for

information on creating task groups.

For example, to resume execution of all tasks in the current task group:

pct> resume

To resume execution of tasks 0 through 20:

pct> resume task 0:20

To resume execution of the tasks in task group mygroup:

pct> resume group mygroup

run subcommand (of the pct command)

run ″pct_script_file″

The run subcommand executes a series of PCT commands that are stored in a

″PCT script file″. A PCT script file is an ASCII file that lists a sequence of PCT

subcommands. Each PCT subcommand is placed on a separate line in the PCT

script file. Lines beginning with a # (pound sign) character are comments and will

not be executed by the PCT.

″pct_script_file″

Specifies the name of the PCT script file whose subcommands you want to

execute. The file name must be enclosed in quotation marks.

For example, to execute the PCT subcommands contained in the PCT script file

myscript.cmd:

pct> run "myscript.cmd"

select subcommand (of the pct command)

select {trace | profile | openmp | commcount}

The select subcommand enables you to select the type of probe data you will be

collecting.

trace Specifies that you intend to collect MPI or custom user event traces for

eventual analysis using Jumpshot or the utestats utility.

pct

112 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

profile

Specifies that you intend to collect hardware and operating system profiles

for analysis using the Profile Visualization Tool.

openmp

Specifies that you intend to profile OpenMP constructs in an OpenMP

application.

commcount

Specifies that you want to use the MPI/LAPI communication profiling tool to

record message sizes for MPI and LAPI communications calls.

For example, if you will be adding trace probes (using the trace add subcommand)

for collecting MPI or custom user event data:

pct> select trace

If, on the other hand, you will be adding profile probes (using the profile add

subcommand) for collecting hardware and operating system profiles:

pct> select profile

If, on the other hand, you will be using the openmp tool:

pct> select openmp

pct>

Normal returns

 none

Error returns:

2554-052 session loaded with “some_other_tool” already

2554-053 tool name “given_name” is not a valid tool name

2554-054 tool “openmp" failed to load

2554-055 tool “openmp” failed to initialize

Given a normal return, openmp tool is now ready to use. All OpenMP related

commands need an openmp prefix to separate those commands from the general

session manager commands.

If you enable the commcount subcommands by issuing:

pct> select commcount

the following commcount subcommands are enabled:

v commcount add

v commcount remove

v commcount setpath

v commcount set mode

v commcount show

set subcommand (of the pct command)

set sourcepath [relative] ″path_list″

The set subcommand enables you to set the path used when displaying the

contents of a file using the list subcommand. The initial value for the source path is

the directory in which the tool was started.

relative

Specifies that, if relative path information is included as part of the file name

pct

Appendix A. Parallel environment tools commands 113

supplied to the list subcommand, the relative path should be used together

with the directories listed in the pathlist.

 For example, say one of the source files in the application is named

″../../myapp/src/compute.c″ and the source path is ″/tmp:/usr/tmp:/home/
mydir/examples/yourapp″. If the relative keyword is used when setting the

source path, the PCT searches the following directories when the list

/../../myapp/src/compute.c subcommand is issued.

/tmp/../../myapp/src/

/usr/tmp/../../myapp/src/

/home/mydir/examples/yourapp/../../myapp/src/

If the relative keyword is not used when setting the source path, however,

the following directories are searched:

/tmp/

/usr/tmp/

/home/mydir/examples/yourapp/

″path_list″

A colon-delimited list that specifies the path the list subcommand will use to

search for source files.

show subcommand (of the pct command)

show { events | group task_group_name |

groups | points | ps | sourcepath |

tools }

 The show subcommand returns, depending on the form of the subcommand you

use, various information about the target application and the PCT.

v Using the form:

show events

returns a list of the possible events that, if you place the PCT in an event loop

using the wait subcommand, can break the PCT out of the loop. Be aware that

the wait subcommand is intended only for use within scripts you write, and is not

intended for interactive command-line sessions.

v Using the form:

show group task_group_name

returns, for each task in the specified task group, the task identifier, the program

name, the name of the host machine on which the task is running, the CPU type,

and the task state.

v Using the form:

show groups

returns a list of task groups. This includes any task groups created by default

(the task groups all and connected), and any task groups you created using the

group subcommand. An ampersand character (@) is displayed to the right of the

default task group.

v Using the form:

show points

pct

114 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

show pointsreturns a list of the available instrumentation point types including

an additional point type to display the point identifier for source block

instrumentation points. This enables you to understand the numeric point type

returned by the point subcommand.

v Using the form:

show ps

returns a list of the processes you own on the node where you started the PCT.

This information is needed when connecting to an application using the connect

subcommand.

v Using the form:

show sourcepath

returns a list of directories searched when displaying the contents of a file using

the list subcommand. You can set the source path using the set subcommand.

v Using the form:

show tools

returns a list of the types of information you can collect using the PCT. This

information is needed when selecting the type of data you will be collecting using

the select subcommand. For example:

pct> show tools

Selected Name Description

-------- ------- -----------

 trace MPI and user event traces...

 profile hardware and operating system profiles...

@ openmp OpenMP profiles

 commcount MPI/LAPI Byte count

pct>

Normal returns the list of tools available to select.

Error returns:

none

For example, to show the tasks in the current task group:

pct> show group

To show the tasks in the task group ″connected″:

pct> show group connected

To show the processes that you own on the host machine:

pct> show ps

start subcommand (of the pct command)

start

 The start subcommand starts execution of an application you have loaded using

the load subcommand. (The load subcommand loads an application into memory in

a ″stopped state″ with execution suspended at the first executable instruction.)

For example, to start execution of the currently-loaded application:

pct> start

pct

Appendix A. Parallel environment tools commands 115

stdin subcommand (of the pct command)

stdin [{″string″ | eof}]

 The stdin subcommand sends the supplied string as standard input to the currently

loaded application. If no string is supplied, the stdin subcommand will send a

newline character to the application. If the eof option is supplied, the stdin

subcommand will send an end-of-file character to the application.

Be aware that this subcommand is intended only for applications that you have

loaded using the load subcommand. If you have instead connected to an

application using the connect subcommand, you cannot send standard input text

using the stdin subcommand.

Also be aware that you can, when loading an application using the load

subcommand, indicate that the application should read standard input from a file

specified by the stdin option. If the stdin option is used when loading an

application with the load subcommand, note that the stdin subcommand cannot be

used.

″string″

Specifies a text string to send to standard input. The string should be

enclosed in quotes, and embedded formatting characters (such as \n) are

permitted. If no string is supplied, the stdin subcommand will send a

newline character to the application.

eof sends an end-of-file character to the input stream reading this input data.

For example:

pct> stdin "now is the time \nfor all good men"

suspend subcommand (of the pct command)

suspend [task task_list | group task_group_name]

 The suspend subcommand suspends execution of one or more processes. By

default, the tasks in the current task group (as previously defined by the group

subcommand) are the ones that are suspended. You can override the default,

however, by specifying a task list or task group name when you issue the suspend

subcommand. You can resume execution of tasks suspended by this subcommand

by issuing the resume subcommand.

task task_list

Specifies the connected POE tasks that you want to suspend. The tasks in

the POE application can be specified by listing individual values separated

by commas (1,3,8,9), by giving a range of tasks using a colon to separate

the ends of the range (12:15 refers to tasks 12, 13, 14, and 15), by giving a

range and increment value using colons to separate the range and

increment values (20:26:2 refers to tasks 20, 22, 24, and 26), or by using a

combination of these (12:18,22,30).

group task_group_name

Specifies the name of a task group. Refer to the group subcommand for

information on creating task groups.

 For example, to suspend execution of all tasks in the current task group:

pct> suspend

pct

116 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

To suspend execution of tasks 0 through 20:

pct> suspend task 0:20

To suspend execution of the tasks in task group ″mygroup″:

pct> suspend group mygroup

trace add subcommand (of the pct command)

The syntax of the trace add command to add a probe to control MPI trace

collection is:

trace add [task task_list | group task_group_name]

{mpiid probetype_number_list | mpiname probe_name_list} to

{file ″regular_expression″[,″regular_expression″]... |

fileid file_identifier[,file_identifier]... }

[function ″regular_expression″[,″regular_expression″]... |

funcid function_identifier[,function_identifier]...]

{block block_name[,block_name] | blockid block_ident[,block_ident]}

 The syntax of the trace add command to add a user marker or traceon/tradeoff

point is:

trace add [task task_list | group task_group_name]

{simplemarker ″marker_name″ |

{{beginmarker | endmarker} ″marker_name″}

| {traceon | traceoff}} to {file ″regular_expression″[,″regular_expression″]... |

fileid file_identifier[,file_identifier]... }

{function ″regular_expression″[,″regular_expression″]... |

funcid function_identifier[,function_identifier]...} pointid point_identifier

 The trace add subcommand enables you to add the following types of probes to

one or more tasks. You can add:

v MPI trace probes. If you add multiple MPI trace probes, be aware that they are

considered a single set of probes. When removing MPI trace probes using the

trace remove subcommand, you will not be able to remove selected probes.

Instead, you’ll have to remove the entire set of probes.

v simple user markers to trace events of interest

v begin user markers and end user markers to trace intervals of interest

v user markers to force tracing on and off

You cannot use this subcommand, or any of the trace subcommands, unless you

have specified that you are collecting trace data. To specify that you are collecting

trace data, issue the select subcommand with its trace clause:

pct> select trace

You also need to specify the output location and a ″base name″ prefix for the trace

files. To do this, use the trace set path command. For example:

pct> trace set path "/home/timf/tracefiles/mytrace"

By default, this subcommand will add the probes to the tasks in the current task

group (as previously defined by the group subcommand). You can override this

default, however, by specifying a task list or task group name when you issue the

trace add subcommand. Be aware, however, that the set of tasks cannot include

different executables in an MPMD application. For example, if an MPMD application

pct

Appendix A. Parallel environment tools commands 117

consists of executables a.out and b.out, then this command cannot be applied to a

task group that contains both a.out and b.out tasks.

task task_list

Specifies the connected POE tasks to which you want to add the trace

probes or user markers. The tasks in the POE application can be specified

by listing individual values separated by commas (1,3,8,9), by giving a

range of tasks using a colon to separate the ends of the range (12:15 refers

to tasks 12, 13, 14, and 15), by giving a range and increment value using

colons to separate the range and increment values (20:26:2 refers to tasks

20, 22, 24, and 26), or by using a combination of these (12:18,22,30).

group task_group_name

Specifies the name of a task group. Refer to the group subcommand for

information on creating task groups.

mpiid probetype_number_list

A probe identifier (or a list of comma-separated probe identifiers) indicating

the type of MPI data (collective communication, point-to-point

communication, one-sided operations, and so on) that you want to collect.

To get a list of the probe identifiers, issue the trace show subcommand

with its probetypes clause as in:

pct> trace show probetypes

mpiname probe_name_list

A probe name (or a list of comma-separated probe names) indicating the

type of MPI data (collective communication, point-to-point communication,

one-sided operations, and so on) that you want to collect. To get a list of

the probe names, issue the trace show subcommand with its probetypes

clause as in:

pct> trace show probetypes

simplemarker ″marker_name″

Indicates that the probe is a simple marker being placed in the target

application to trace a particular event of interest. A simple marker appears

in the trace record as a single point.

{beginmarker | endmarker} ″marker_name″

Specifies that the probe is a user marker that marks either the beginning or

ending of a named user state. You need to mark both the beginning and

ending of the range with the same ″marker_name″ (a string that will be

used to identify the user state in the trace record). You can only use a

particular marker name for one begin marker/end marker pair. The state will

appear in the trace record as a region.

{traceon | traceoff}

Specifies that the probe is a user marker that will either force tracing on or

off. This provides a finer degree of trace control than is otherwise available

when merely specifying the file and function to trace.

file ″regular_expression″[,″regular_expression″]...

Specifies, using one or more regular expressions (file name substitution

patterns), the file(s) you wish to instrument. The regular expression must be

contained in quotation marks.

fileid file_identifier[,file_identifier]...

Specifies, using one or more file identifiers as returned by the file

subcommand, the files you wish to instrument.

pct

118 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

function ″regular_expression″[,″regular_expression″]...

Specifies, using one or more regular expressions, the function(s) you want

to instrument.

funcid function_identifier[,function_identifier]...

Specifies, using one or more function identifiers as returned by the function

subcommand, the function you want to instrument.

pointid point_identifier

Specifies, using a point identifier, the instrumentation point at which to add

the user markers.

block block_name[,block_name]

Specifies one or more block names where MPI trace probes are to be

added. If this parameter is specified, then either the file or fileid parameter

must be specified. The combination of file or fileid keywords and block or

blockid keywords must resolve to a single file. The source file must be

compiled with the -g option, or in the case of a FORTRAN source file, the

-g and -qdpcl flags. The block name is specified in the same way as the

block_name parameter is specified in the block subcommand. This

parameter is mutually exclusive with the function, funcid, and pointid

parameters.

blockid block_ident[,block_ident]

Specifies the block or range of block identifiers as identified by the block

command. If this parameter is specified, then the file or fileid parameters

must be specified. The combination of file or fileid keywords and block or

blockid keywords must resolve to a single file. The source file must be

compiled with the -g option, or in the case of a FORTRAN source file, the

-g and -qdpcl flags. This parameter is mutually exclusive with the function,

funcid, and pointid parameters

If the blockid or block keywords are not specified, then probes will only be inserted

at function entry and exit points. Allowing probes to be inserted at all blocks in a

function as a default action is likely to cause excessive overhead in tracing that

function.

For example, to trace all MPI events in the file ″bar.c″:

pct> trace add mpiname all to file "bar.c"

To add a begin state marker named ″green″ to the second point of the first function

of file ″foo.c″:

pct> trace add beginmarker "green" to file "foo.c" funcid 0 pointid 1

trace help subcommand (of the pct command)

trace help [trace_command_name]

The trace help subcommand can either list all of the PCT’s trace subcommands, or

else return the syntax of a particular trace subcommand. You cannot use this

subcommand, or any of the trace subcommands, unless you have specified that

you are collecting trace data. To specify that you are collecting trace data, issue the

select subcommand with its trace clause:

select trace

trace_command_name

refers to the name of the PCT trace subcommand you want help on.

pct

Appendix A. Parallel environment tools commands 119

For example, to get a listing of all of the PCT’s trace subcommands:

pct> trace help

To get the syntax of the trace add subcommand:

pct> trace help add

trace remove subcommand (of the pct command)

trace remove {marker marker_id | probe probe_index}

 The trace remove subcommand enables you to remove a custom user marker or a

trace probe set.

marker marker_id

Specifies the marker identifier of the custom user marker you want to

remove. To ascertain the marker identifier, use the trace show

subcommand with its markers clause.

pct> trace show markers

probe probe_index

Specifies, using a probe index, the trace probe set you wish to remove. A

trace probe set consists of one or more probes previously installed by the

trace add subcommand. To ascertain the trace probe set you wish to

remove, use the trace show subcommand with its probes clause as in:

pct> trace show probes

For example, to remove the trace probe whose probe identifier is ″2″:

pct> trace remove probe 2

trace set subcommand (of the pct command)

trace set { path ″path_name/output_file_base_name″ | [bufsize buffer_size]

[{event {mpi | process | idle} | {event [mpi,] [process,] [idle]}]

[logsize maximum_log_size]}

 The trace set subcommand enables you to specify various settings for event trace

collection. You cannot use this subcommand, or any of the trace subcommands,

unless you have specified that you are collecting trace data. To specify that you are

collecting trace data, issue the select subcommand with its trace clause:

select trace

The settings you make with this subcommand will stay in effect until you issue the

select subcommand.

path ″path_name/output_file_base_name″

Specifies a relative or full path name to the desired location for trace files

followed by the output file base name. The base name is needed because

the data collected by the PCT will be stored as a file on each host machine

where a connected process with probes is running, The file name will

consist of the base name you supply followed by a node specific suffix

supplied by the PCT.

bufsize buffer_size

Specifies the AIX trace buffer size in Kilobytes. This value can be at most

1024, which is also the default value.

pct

120 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

[{event {mpi | process | idle} | {event [mpi,] [process,] [idle]}]

Specifies the type of events (MPI events, process dispatch events, and

CPU idle events) that are traced. By default, MPI events and process

dispatch events are traced. Tracing process dispatch events and CPU idle

events can result in larger trace files, but the additional information can

provide useful context for the MPI information collected.

 If you want to specify more than one event type, use a comma to separate

the event type names.

logsize maximum_log_size

Specifies the maximum trace file size in Megabytes. The default is 20 M.

 For example, to specify the directory tracefiles/mytrace as the output directory for

the trace files:

pct> trace set path "tracefiles/mytrace"

To specify the buffer size to be 900 K:

pct> trace set bufsize 900

To specify the maximum trace file size to be 25 M:

pct> trace set logsize 25

To specify that CPU idle events should be collected:

pct> trace set event idle

To specify that MPI and CPU idle events should be collected:

pct> trace set event mpi, idle

trace show subcommand (of the pct command)

trace show {[task task_list | group task_group_name] {markers | probes} |

probetypes | path| options}

 The trace show subcommand lists, depending on the clause you specify, either:

v the currently installed trace probes:

trace show [task task_list | group task_group_name] probes

v the currently installed user markers:

trace show [task task_list | group task_group_name] markers

v the list of available probe types you can add using the trace add subcommand:

trace show probetypes

v the trace file output location and base name (as set by the trace set path

subcommand):

trace show path

v the BufSize, LogSize and Event:

trace show options

When listing the currently installed trace probes or user markers, the action is

performed for the tasks in the current task group (as previously defined by the

group subcommand). You can override this default, however, by specifying a task

list or task group name when you issue the trace show subcommand.

task task_list

Specifies the connected POE tasks whose trace probes or user markers

pct

Appendix A. Parallel environment tools commands 121

you want to list. The tasks in the POE application can be specified by listing

individual values separated by commas (1,3,8,9), by giving a range of tasks

using a colon to separate the ends of the range (12:15 refers to tasks 12,

13, 14, and 15), by giving a range and increment value using colons to

separate the range and increment values (20:26:2 refers to tasks 20, 22,

24, and 26), or by using a combination of these (12:18,22,30).

group task_group_name

Specifies the name of a task group. Refer to the group subcommand for

information on creating task groups.

markers

Specifies that you want the trace show subcommand to list the currently

installed user markers.

options

Specifies that you want the trace show subcommand to list the current

settings for BufSize, LogSize and Event.Specifies.

probes

Specifies that you want the trace show subcommand to list the currently

installed trace probes.

probetypes

Specifies that you want the trace show subcommand to list the available

trace probe types you can add using the trace add subcommand.

path Specifies that you want the trace show subcommand to return the trace file

output location and base name as set by the trace set path subcommand.

 For example, to list the trace probes installed in the tasks in the current task group:

pct> trace show probes

To list the user markers for the tasks in the task group ″workers″:

pct> trace show markers

To list the available probe types:

pct> trace show probetypes

wait subcommand (of the pct command)

wait

 The wait subcommand blocks the PCT’s execution so that it can wait for

asynchronous system events (such as a task terminating) to occur. When one of

these asynchronous events occurs, the PCT resumes execution, and returns the

event that occurred. Be aware that this command is intended only for use within

scripts you write, and is not intended for interactive command-line sessions. If you

use it during an interactive command-line session, the only way to break out of the

loop is to press <control>-C which will kill the PCT.

To see a list of the possible events that can resume execution of the PCT, issue the

subcommand:

pct> show events

For example, the following example blocks execution of the PCT. Execution of the

PCT resumes when the target application terminates. The PCT returns the event

name ″app_term″:

pct

122 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

pct> wait

app_term

pct

Appendix A. Parallel environment tools commands 123

pdbx

NAME

pdbx – Invokes the pdbx debugger, which is the command-line debugger built on

dbx.

SYNOPSIS

pdbx [program [program_options]] [poe options]

[-c command_file]

[-d nesting_depth]

[-E DebugEnv

[-E DebugEnv]...]

[-I directory

[-I directory]...]

[-F]

[-x]

pdbx -a poe process id

[limited poe options]

[-c command_file]

[-d nesting_depth]

[-I directory

[-I directory]...]

[-F]

[-x]

pdbx -h

The pdbx command invokes the pdbx debugger. This tool is based on the dbx

debugger, but adds function specific to parallel programming.

FLAGS

Because pdbx runs in the Parallel Operating Environment, it accepts all the flags

supported by the poe command.

Note: poe uses the PATH environment variable to find the program, while pdbx

does not.

See the poe manual page in IBM Parallel Environment: Operation and Use, Volume

1 for a description of these options. Additional pdbx flags are:

-a Attaches to a running poe job by specifying its process id. This must be

executed from the node where the poe job was initiated. When using the

debugger in attach mode there are some debugger command line arguments

that should not be used. In general, any arguments that control how the

partition is set up or specify application names and arguments should not be

used.

-c Reads startup commands from the specified commands_file.

-d

Sets the limit for the nesting of program blocks. The default nesting depth limit

is 25.

pdbx

124 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

-E

This flag can be used to specify an environment variable and its value which

will be set for the remote task. The -E flag must be specified multiple times to

specify multiple environment variables. This flag has no effect when used in

combination with the -a flag.

Note: poe sets up some environment variables for the remote task which could

be overriden using the pdbx -E flag. To resolve this, it may be necessary

to check the environment of the remote task with and without the pdbx

-E flag.

-F

This flag can be used to turn off lazy reading mode. Turning lazy reading mode

off forces the remote dbx sessions to read all symbol table information at

startup time. By default, lazy reading mode is on.

 Lazy reading mode is useful when debugging large executable files, or when

paging space is low. With lazy reading mode on, only the required symbol table

information is read upon initialization of the remote dbx sessions. Because all

symbol table information is not read at dbx startup time when in lazy reading

mode, local variable and related type information will not be initially available for

functions defined in other files. The effect of this can be seen with the whereis

command, where instances of the specified local variable may not be found

until the other files containing these instances are somehow referenced.

-h

Writes the pdbx usage to STDERR then exits. This includes pdbx command

line syntax and a description of pdbx options.

-I (upper-case i)

Specifies a directory to be searched for an executable’s source files. This flag

must be specified multiple times to set multiple paths. (Once pdbx is running,

this list can be overridden on a group or single node basis with the use

subcommand.)

-x Prevents dbx from stripping _ (trailing underscore) characters from symbols

originating in Fortran source code. This flag enables dbx to distinguish between

symbols which are identical except for an underscore character, such as xxx

and xxx_.

DESCRIPTION

pdbx is the Parallel Environment’s command-line debugger for parallel programs. It

is based, and built, on the AIX debugging tool dbx.

pdbx supports most of the familiar dbx subcommands, as well as additional pdbx

subcommands.

To use pdbx for interactive debugging you first need to compile the program and

set up the execution environment as you would to invoke a parallel program with

the poe command. Your program should be compiled with the -g flag in order to

produce an object file with symbol table references. It is also advisable to not use

the optimization option, -O. Using the debugger on optimized code may produce

inconsistent and erroneous results. For more information on the -g and -O compiler

options, refer to their use on other compiler commands such as cc and xlf. These

compiler commands are described in AIX 5L Commands Reference

pdbx

Appendix A. Parallel environment tools commands 125

pdbx maintains dbx’s command-line interface and subcommands. When you

invoke pdbx, the pdbx command prompt displays to mark the start of a pdbx

session.

When using pdbx, you should keep in mind that pdbx subcommands can either be

context sensitive or context insensitive. In pdbx, context refers to a setting that

controls which task(s) receive the subcommands entered at the pdbx command

prompt. A default command context is provided which contains all tasks in your

partition. You can, however, set the command context on a single task or a group of

tasks you define. Context sensitive subcommands, when entered, only affect those

tasks in the current command context. Context insensitive subcommands are not

affected by the command context setting.

If you are already familiar with dbx, you should be aware that some dbx

subcommands behave somewhat differently in pdbx. Be aware that:

v all the dbx subcommands are context sensitive in pdbx. If you use the stop

subcommand, for example, it will only set breakpoints for the tasks in the current

context. Tasks outside the current context are not affected.

v redirection from dbx subcommands is not supported.

v you cannot use the subcommands clear, detach, edit, multproc, prompt, run,

rerun, screen, and the sh subcommand with no arguments.

v since pdbx runs in the Parallel Operating Environment, output from the parallel

tasks may not be ordered. You can force task ordering, however, by setting the

output mode to ordered using the MP_STDOUTMODE environment variable or

the -stdoutmode flag when invoking your program with pdbx.

When a task hangs (there is no pdbx prompt) you can press <Ctrl-c> to acquire

control. This displays the pdbx subset prompt pdbx-subset([group | task]), and

provides a subset of pdbx functionality:

v Changing the current context

v Displaying information about groups/tasks

v Interrupting the application

v Showing breakpoint/tracepoint status

v Getting help

v Exiting the debugger.

You can change the subset of tasks to which context sensitive commands are

directed. Also, you can understand more about the current state of the application,

and gain control of your application at any time, not just at user-defined

breakpoints.

At the pdbx subset prompt, all input you type at the command line is intercepted by

pdbx. All commands are interpreted and operated on by the home node. No data is

passed to the remote nodes and STDIN is not given to the application. Most

commands at the pdbx subset prompt produce information about the application

and then produce another pdbx subset prompt. The exceptions are the halt, back,

on, and quit commands. For more information, see “Context switch when blocked”

on page 16.

ENVIRONMENT VARIABLES

Because the pdbx command runs in the Parallel Operating Environment, it interacts

with the same environment variables associated with the poe command. See the

poe manual page in IBM Parallel Environment: Operation and Use, Volume 1 for a

pdbx

126 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

description of these environment variables. As indicated by the syntax statements,

you are also able to specify poe command line options when invoking pdbx. Using

these options will override the setting of the corresponding environment variable, as

is the case when invoking a parallel program with the poe command. Additional

variables are:

HOME

During pdbx initialization, pdbx uses this environment variable to search for

two special initialization files. First, pdbx searches for .pdbxinit in the user’s

current directory. If the file is not found, pdbx checks the file

$HOME/.pdbxinit.

SHELL

The sh subcommand in dbx, which is available through pdbx, uses this

environment variable to determine which shell to use. If this environment

variable is not set, the default is the sh shell.

MP_DBXPROMPTMOD

The dbx prompt \n(dbx) is used by pdbx as an indicator denoting that a

dbx subcommand has completed. This environment variable can be used

to modify the prompt. Any value assigned to MP_DBXPROMPTMOD will

have a “.” prepended and then be inserted in the \n(dbx) prompt between

the “x” and the “)”. This environment variable is needed in rare situations

when the string \n(dbx) is present in the output of the application being

debugged. For example, if MP_DBXPROMPTMOD is set to unique157, the

prompt would be \n(dbx.unique157).

MP_DEBUG_INITIAL_STOP

This environment variable redefines the initial stop point in pdbx (overriding

the stop in main). It can be set to sourcefile:linenumber, where sourcefile is

a file containing source code of the program to be executed. Typically, the

source file name ends with the .c, .C, or f suffix. Linenumber is a line

number in this file. This line must contain executable code, not data

declarations or Fortran FORMAT statements. It cannot be a comment,

blank, or continuation line.

 If no linenumber is specified (and the colon is omitted), the sourcefile field

is taken to be a function or subroutine name, and a “stop in” is performed

on entry to the function.

 If MP_DEBUG_INITIAL_STOP is undefined, the default stop location will be

the first executable line in the function main. For Fortran source programs,

it will be the first executable line in the main program.

EXAMPLES

To start pdbx, first set up the execution environment as you would for the poe

command, and then enter:

pdbx

After initialization, you should see the prompt:

pdbx(all)

FILES

.pdbxinit (Initial commands for pdbx in ./ or $HOME)

.pdbxinit.process_id.task_id (Initial commands for the individual dbx tasks)

pdbx

Appendix A. Parallel environment tools commands 127

For more information on .pdbxinit see Table 4 on page 5 and “Reading

subcommands from a command file” on page 30.

Note: The following temporary files are created during the execution of pdbx in

attach mode:

v /tmp/.pdbx.<poe-pid>.host.list - a temporary host list file containing

information needed to attach to tasks on remote nodes.

v /tmp/.pdbx.<pdbx-pid>.menu - a temporary file to hold the attach task

menu. Both of these files are removed before the debugger exits.

RELATED INFORMATION

Commands: dbx(1), mpcc_r(1), mpCC_r(1), mpxlf_r(1), poe(1)

pdbx

128 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

Subcommands of the pdbx command

There are a number of subcommands that are available when using pdbx in

command line mode. This includes subcommands for attaching the debugger to the

tasks of a POE job, detaching the debugger from tasks to which it is currently

attached, grouping tasks, unhooking tasks and then reestablishing control over

them, setting the command context for specific tasks, and so on. For information on

the pdbx command, see “pdbx” on page 124.

alias subcommand (of the pdbx command)

alias [alias_name [alias_string]]

The alias subcommand creates aliases for pdbx subcommands. The alias_name

parameter is the alias being created. The alias_string is the pdbx subcommand for

which you wish you define an alias, and is a single pdbx subcommand. If used

without parameters, the alias subcommand displays all current aliases. If only

alias_name is specified, it lists the alias name and the alias string that is assigned

to it. This subcommand is context insensitive.

A number of default aliases are provided by pdbx. They are:

t where

j status

st stop

s step

x registers

q quit

p print

n next

m map

l list

h help

d delete

c cont

th thread

mu mutex

cv condition

attr attribute

Apart from these, aliases are only known during the current pdbx session. They are

not saved between pdbx sessions, and are lost upon exiting pdbx.

Note: One method for reusing aliases is to define them in .pdbxinit to allow them to

be created for each pdbx execution. The default aliases are available after

the partition has been loaded.

Aliases can also be removed using the unalias subcommand for the pdbx

command.

1. If you have two task groups defined in your pdbx session called “master” and

“workers”, and you wish to define aliases to easily qualify each, enter:

alias mas on master

alias w on workers

This will allow you to switch the command context between the master and

workers groups by typing:

mas

pdbx

Appendix A. Parallel environment tools commands 129

|
|
|
|
|
|

to switch context to the “master” group, or:

w

to switch context to the “workers” group.

2. To display the string that has been defined for the alias “p”, enter:

alias p

3. To list all aliases currently defined, enter:

alias

Related to this subcommand is the pdbx unalias subcommand.

assign subcommand (of the pdbx command)

assign <variable> = <expression>

The assign subcommand assigns the value of an expression to a variable.

1. To assign a value of 5 to the x variable:

pdbx(all) assign x = 5

2. To assign the value of the y variable to the x variable:

pdbx(all) assign x = y

3. To assign the character value ‘z’ to the z variable:

pdbx(all) assign z = ’z’

4. To assign the boolean value false to the logical type variable B:

pdbx(all) assign B = false

5. To assign the “Hello World” string to a character pointer Y:

pdbx(all) assign Y = "Hello World"

6. To disable type checking, activate the set variable $unsafeassign:

pdbx(all) set $unsafeassign

attach subcommand (of the pdbx command)

attach all

attach <task_list>

The attach subcommand is used to attach the debugger to some or all the tasks of

a given poe job.

Individual tasks are separated by spaces. A range of tasks may be separated by a

dash or a colon. For example, the command attach 2 4 5-7 would mean to attach

to tasks 2,4,5,6, and 7.

attribute subcommand (of the pdbx command)

attribute

attribute [<attribute_number> ...]

The attribute subcommand displays information about the user thread, mutex, or

condition attributes objects defined by the attribute_number parameters. If no

parameters are specified, all attributes objects are listed.

For each attributes object listed, the following information is displayed:

pdbx

130 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

attr Indicates the symbolic name of the attributes object, in the form

$aattribute_number.

obj_addr

Indicates the address of the attributes object.

type Indicates the type of the attributes object; this can be thr, mutex, or cond

for user threads, mutexes, and condition variables respectively.

state Indicates the state of the attributes object. This can be valid or invalid.

stack Indicates the stacksize attribute of a thread attributes object.

scope

Indicates the scope attribute of a thread attributes object. This determines

the contention scope of the thread, and defines the set of threads with

which it must contend for processing resources. The value can be sys or

pro for system or process contention scope.

prio Indicates the priority attribute of a thread attributes object.

sched

Indicates the schedpolicy attribute of a thread attributes object. This

attribute controls scheduling policy, and can be fifo (first in first out), rr

(round robin), or other.

p-shar

Indicates the process-shared attribute of a mutex or condition attribute

object. A mutex or condition is process-shared if it can be accessed by

threads belonging to different processes. The value can be yes or no.

protocol

Indicates the protocol attribute of a mutex. This attribute determines the

effect of holding the mutex on a thread’s priority. The value can be no_prio,

prio, or protect.

Related to this subcommand are the condition mutex and thread subcommands.

back subcommand (of the pdbx command)

back

The back command returns you to a pdbx prompt when you were already at a

pdbx subset prompt. You can use the command if you want the application to

continue as it was before <Ctrl-c> was issued. Also, you can use it at the pdbx

subset prompt if all of the nodes are checked into “debug ready” state, and you

want to do full pdbx processing.

The back command is only valid at the pdbx subset prompt.

call subcommand (of the pdbx command)

call <procedure> (<parameters>)

The call subcommand runs a procedure specified by the procedure parameter. The

return code is not printed. If any parameters are specified, they are passed to the

procedure being run.

pdbx

Appendix A. Parallel environment tools commands 131

The program stack will be returned to its previous state after the procedure

specified by call completes. Any side effect of the procedure, such as global

variable updates, will remain.

Related to this subcommand is the print subcommand.

case subcommand (of the pdbx command)

case [default | mixed | lower | upper]

The case subcommand changes how pdbx interprets symbols. The default

handling of symbols is based on the current language. If the current language is C,

C++, or undefined, the symbols are not folded. If the current language is Fortran,

the symbols are folded to lowercase. Use this command if a symbol needs to be

interpreted in a way not consistent with the current language.

Entering the case subcommand with no parameters displays the current case

mode. The parameters include:

default

Varies with the current language.

mixed

Causes symbols to be interpreted as they actually appear.

lower Causes symbols to be interpreted as lowercase.

upper

Causes symbols to be interpreted as uppercase.

catch subcommand (of the pdbx command)

catch

catch <signal_number>

catch <signal_name>

The catch subcommand with no arguments prints all signals currently being caught.

If a signal is specified, pdbx will trap the signal before it is sent to the program.

This is useful when the program being debugged has signal handlers.

When the program encounters a signal that is being caught to the debugger, a

message stating which signal was detected is shown, and the pdbx prompt is

displayed. To have the program continue and process the signal, issue the cont

subcommand with the signal option. Other execution control commands and the

cont subcommand without the signal option will cause the program to behave as if

it had never encountered the signal.

A signal may be specified by number or name. Signal names are by default case

insensitive and the “SIG” prefix is optional.

By default all signals are caught except SIGHUP, SIGKILL, SIGPIPE, SIGALRM,

SIGCHLD, SIGIO and SIGVIRT. When debugging a threaded application (including

those compiled with mpcc_r, mpCC_r or mpxlf_r), all signals are caught except

SIGHUP, SIGKILL, SIGALRM, SIGCHLD, SIGIO and SIGVIRT.

Related to this subcommand are the ignore and cont subcommands.

pdbx

132 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

condition subcommand (of the pdbx command)

condition

condition [<condition_number> ...]

condition [wait | nowait]

The condition subcommand displays the current state of all known conditions in

the process. Condition variables to be listed can be specified through the

<condition_number> parameters, or all condition variables will be listed. Users can

also choose to display only condition variables with or without waiters by using the

wait or nowait options.

The information listed for each condition is as follows:

cv Indicates the symbolic name of the condition variable, in the form

$ccondition_number.

obj_addr

Indicates the memory address of the condition variable.

num_wait

Indicates the number of threads waiting on the condition variable.

waiters

Lists the user threads which are waiting on the condition variable.

Related to this subcommand are the attribute mutex and thread subcommands.

cont subcommand (of the pdbx command)

cont

cont <signal_number>

cont <signal_name>

The cont subcommand allows execution to continue from where the program last

stopped, until either the program finishes or another breakpoint is reached. If a

signal is specified, it is given to the program, and the process continues as though

it received the signal. If a signal is not specified, the process continues as though it

had not been stopped.

Related to this subcommand are the catch, ignore, step, stepi, next, and nexti

subcommands.

dbx subcommand (of the pdbx command)

dbx dbx_subcommand

The dbx subcommand is context sensitive and will pass the specified

dbx_subcommand directly to the dbx running on each task in the current context

with no pdbx intervention. The specified dbx_subcommand can be any valid dbx

subcommand.

Note: The pdbx command uses dbx to access tasks on individual nodes. In many

cases, pdbx saves and requires its own state information about the tasks.

Some dbx commands will circumvent the ability of pdbx to maintain

accurate state information about the tasks being debugged. Therefore, use

the dbx subcommand with caution. In general, dbx subcommands used to

pdbx

Appendix A. Parallel environment tools commands 133

display information will have no adverse side effects. The subcommands

clear, detach, edit, multproc, prompt, run, rerun, screen, and the sh

subcommand with no arguments are currently unsupported under pdbx and

should not be used.

To display the events that the dbx running as task 1 recognizes, enter:

on 1 dbx status

Related to this subcommand is the dbx command.

delete subcommand (of the pdbx command)

delete [event_list] | [*] | [all]

The delete subcommand removes events (breakpoints and tracepoints) of the

specified event numbers. An event list can be specified in the following manner. To

indicate a range of events, enter the first and last event numbers, separated by a

colon or dash. To indicate individual events, enter the numbers, separated by a

space or comma. You can specify “ * ”, which deletes all events that were created

in the current context. You can also specify “all”, which deletes all events,

regardless of context.

The event number is the one associated with the breakpoint or tracepoint. This

number is displayed by the stop and trace subcommands when an event is built.

Event numbers can also be displayed using the status subcommand.

The output of the status command shows the context from which the event was

created. Event numbers are unique to the context in which they were set. Keep in

mind that, in order to remove an event, the context must be on the appropriate task

or task group.

Assume the command context is set on task 1 and the output of the status

subcommand is:

1:[0] stop in celsius

all:[0] stop at "foo.c":19

all:[1] trace "foo.c":21

To delete all these events, you would do one of the following:

on 1

delete 0

on all

delete 0,1

OR

on 1

delete 0

on all

delete *

OR

delete all

Related to this subcommand are the pdbx status, stop, and trace subcommands.

pdbx

134 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

detach subcommand (of the pdbx command)

detach

The detach subcommand detaches pdbx from all tasks that were attached. This

subcommand causes the debugger to exit but leaves the poe application running.

dhelp subcommand (of the pdbx command)

dhelp

dhelp <dbx_command>

The dhelp command with no arguments displays a list of dbx commands about

which detailed information is available.

If you type dhelp with an argument, information will be displayed about that

command.

Note: The partition must be loaded before you can use this command, because it

invokes the dbx help command. It is also required that a task be in “debug

ready” state to process this command.

Related to this subcommand is the pdbx help subcommand.

display memory subcommand (of the pdbx command)

<address> / [<mode>]

<address> , <address> / [<mode>]

<address> / [<count>] [<mode>]

The display memory subcommand, which does not have a keyword to initiate the

command, displays a portion of memory controlled by the address(es), count(s) and

mode(s) specified.

If an address is specified, the display contents of memory at that address is printed.

If more than one address or count locations are specified, display contents of

memory starting at the first <address> up to the second <address> or until <count>

items are printed. If the address is “.”, the address following the one most recently

printed is used. The mode specifies how memory is to be printed. If it is omitted the

previous mode specified is used. The initial mode is “X”.

The following modes are supported:

i print the machine instruction

d print a short word in decimal

D print a long word in decimal

o print a short word in octal

O print a long word in octal

x print a short word in hexadecimal

X print a long word in hexadecimal

b print a byte in octal

pdbx

Appendix A. Parallel environment tools commands 135

c print a byte as a character

h print a byte in hexadecimal

s print a string (terminated by a null byte)

f print a single precision real number

g print a double precision real number

q print a quad precision real number

lld print an 8 byte signed decimal number

llu print an 8 byte unsigned decimal number

llx print an 8 byte unsigned hexadecimal number

llo print an 8 byte unsigned octal number

down subcommand (of the pdbx command)

down [count]

The down subcommand moves the current function down the stack the number of

levels specified by count. The current function is used for resolving names. The

default for the count parameter is one.

The up and down subcommands can be used to navigate through the call stack.

Using these subcommands to change the current function also causes the current

file and local variables to be updated to the chosen stack level.

Related to this subcommand are the up, print, dump, func, file, and where

commands.

dump subcommand (of the pdbx command)

dump

dump <procedure>

dump .

dump <module name>

The dump subcommand prints the names and values of variables in a given

procedure, or the current one if nothing is specified. If the procedure given is “.”,

then all active variables are printed. If a module name is given, all variables in the

module are printed.

Related to this subcommand are the up, down, print, and where subcommands.

file subcommand (of the pdbx command)

file [file]

The file subcommand changes the current source file to the file specified by the file

parameter. It does not write to that file. The file parameter can specify a full path

name to the file. If the parameter does not specify a path, the pdbx program tries to

find the file by searching the use path. If the parameter is not specified, the file

subcommand displays the name of the current source file. The file subcommand

also displays the full or relative path name of the file if the path is known.

pdbx

136 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

Related to this subcommand is the func subcommand.

func subcommand (of the pdbx command)

func [procedure]

The func command changes the current function to the procedure or function

specified by the procedure parameter. If the procedure parameter is not specified,

the default current function is displayed. Changing the current function implicitly

changes the current source file to the file containing the new function. The current

scope used for name resolution is also changed.

Related to this subcommand is the file subcommand.

goto subcommand (of the pdbx command)

goto <line_number>

goto “<filename>” : <line_number>

The goto subcommand causes the specified source line to be run next. Normally,

the source line must be in the same function as the current source line. To override

this restriction, use the set subcommand with the $unsafegoto flag.

gotoi subcommand (of the pdbx command)

gotoi address

The gotoi subcommand changes the program counter address to the address

specified by the address parameter.

group subcommand (of the pdbx command)

group add group_name task_list

group delete group_name [task_list]

group change old_group_name new_group_name

group list [group_name]

The group subcommand groups individual tasks under a common name for easier

setting of command context. It can add or delete a group, add or delete tasks from

a group, change the name of a group, list the tasks in a group, or list all groups.

This subcommand is context insensitive.

Provide a group name that is no longer than 32 characters which starts with an

alphabetic character, and is followed by any alphanumeric character combination.

To indicate a range of tasks, enter the first and last task numbers, separated by a

colon or dash. To indicate individual tasks, enter the numbers, separated by a

space or comma. Individual task identifiers and ranges can also be combined in

creating the desired task_list.

Note: Group names all, none, and attached are reserved group names. They are

used by the debugger and cannot be used in the group add or group

delete commands. However, the group all or attached can be renamed using

the group change command, if it currently exists in the debugging session.

pdbx

Appendix A. Parallel environment tools commands 137

The add action adds one or more tasks to a new or existing task group. The

task_list specified is a list of task identifiers to be included in the new or existing

group.

The delete action deletes an existing task group, or deletes one or more tasks from

an existing task group. The task_list, if specified, is a list of task identifiers to be

deleted from the new or existing group.

The change action changes the name of a task group from old_group_name to

new_group_name.

The list action displays the task members for the group_name specified, or for all

task groups. The task identifiers will be followed by a one-letter status indicator.

N Not loaded - The remote task has not yet been loaded with an executable.

S Starting - The remote task is being loaded with an executable.

D Debug ready - The remote task is stopped and debug commands can be

issued.

R Running - The remote task is in control and executing the program.

X Exited - The remote task has completed execution.

U Unhooked - The remote task is executing without debugger intervention.

E Error - The remote task is in an unknown state.

 Consider an application running as five tasks numbered 0 through 4.

1. To create a task group “first” containing task 0, enter:

group add first 0

The pdbx debugger responds with:

1 task was added to group "first".

2. To create a task group “rest” containing tasks 1 through 4, enter:

group add rest 1:4

The pdbx debugger responds with:

4 tasks were added to group "rest".

3. To change the name of the default group “all” to “johnny”, enter:

group change all johnny

The pdbx debugger responds with:

Group "all" has been renamed to "johnny"

4. To list all of the groups and the tasks they contain, enter:

group list

The pdbx debugger responds with:

johnny 0:D 1:D 2:D 3:D 4:D

first 0:D

rest 1:D 2:D 3:D 4:D

5. To delete the group “first”, enter:

group delete first

To delete members 1, 2 and 3 from group “rest”, enter:

group delete rest 1 2 3

or

group delete rest 1-3

The pdbx debugger responds with:

pdbx

138 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

||

||

||
|

||

||

||

||

Task: 1 was successfully deleted from group "rest".

Task: 2 was successfully deleted from group "rest".

Task: 3 was successfully deleted from group "rest".

6. To list all of the groups and the tasks they contain, enter:

group list

The pdbx debugger responds with:

allTasks 0:R 1:D 2:D 3:U 4:U 5:D 6:D

 7:D 8:D 9:D 10:D 11:D

evenTasks 0:R 2:D 4:U 6:D 8:D 10:R

oddTasks 1:D 3:U 5:D 7:D 9:D 11:R

master 0:R

workers 1:D 2:D 3:U 4:U 5:D 6:D 7:D

 8:D 9:D 10:R 11:R

Related to this subcommand is the pdbx on subcommand.

halt subcommand (of the pdbx command)

halt [all]

By using the halt command, you interrupt all tasks in the current context that are

running. This allows the debugger to gain control of the application at whatever

point the running tasks happen to be in the application. To a dbx user, this is the

same as using <Ctrl-c>. This command works at the pdbx prompt and pdbx

subset prompt. If you specify “all” with the command, all running tasks, regardless

of context, are interrupted.

Note: At a pdbx prompt, the halt command never has any effect without “all”

specified. This is because by definition, at a pdbx prompt, none of the tasks

in the current context are in “running” state.

The halt all command at the pdbx prompt affects tasks outside of the current

context. Messages at the prompt show the task numbers that are and are not

interrupted, but the pdbx prompt returns immediately because the state of the tasks

in the current context is unchanged.

When using halt at the pdbx subset prompt, the pdbx prompt occurs when all

tasks in the current context have returned to “debug ready” state. If some of the

tasks in the current context are running, a message is presented.

Related to this subcommand are the pdbx tasks and group list subcommands.

help subcommand (of the pdbx command)

help - display subjects

help <subject> - display details

The help command with no arguments displays a list of pdbx commands and

topics about which detailed information is available.

If you type help with one of the help commands or topics as the argument,

information will be displayed about that subject.

Related to this subcommand is the pdbx dhelp subcommand

pdbx

Appendix A. Parallel environment tools commands 139

hook subcommand (of the pdbx command)

hook

The hook subcommand allows you to reestablish control over all tasks in the

current command context that have been unhooked using the unhook

subcommand. This subcommand is context sensitive.

1. To reestablish control over task 2 if it has been unhooked, enter:

on 2 hook

or

on 2

hook

2. To reestablish control over all unhooked tasks in the task group “rest”, enter:

on rest hook

or

on rest

hook

Listing the members of the task group “all” using the list action of the group

subcommand will allow you to check which tasks are hooked and which are

unhooked. Enter:

group list all

The pdbx debugger will display a list similar to the following:

0:D 1:U 2:D 3:D

Tasks marked with the letter D next to them are debug ready, hooked tasks. In this

case, tasks 0, 2, and 3 are debug ready. Tasks marked with the letter U are

unhooked. In this case, task 1 is unhooked.

Related to this subcommand are the dbx detach subcommand and the pdbx

unhook subcommand.

ignore subcommand (of the pdbx command)

ignore

ignore <signal_number>

ignore <signal_name>

The ignore subcommand with no arguments prints all signals currently being

ignored. If a signal is specified, pdbx stops trapping the signal before it is sent to

the program.

A signal may be specified by number or name. Signal names are by default case

insensitive and the “SIG” prefix is optional.

All signals except SIGHUP, SIGKILL, SIGPIPE, SIGALRM, SIGCHLD, SIGIO, and

SIGVIRT are trapped by default. When debugging a threaded application (including

those compiled with mpcc_r, mpCC_r, or mpxlf_r), all signals except SIGHUP,

SIGKILL, SIGALRM, SIGCHLD, SIGIO, and SIGVIRT are trapped by default.

The pdbx debugger cannot ignore the SIGTRAP signal if it comes from a process

outside of the program being debugged.

pdbx

140 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

Related to this subcommand is the catch subcommand.

list subcommand (of the pdbx command)

list [procedure | sourceline-expression[, sourceline-expression]]

The list subcommand displays a specified number of lines of the source file. The

number of lines displayed is specified in one of two ways:

Tip: Use on <task> list, or specify the ordered standard output option.

v By specifying a procedure using the procedure parameter.

In this case, the list subcommand displays lines starting a few lines before the

beginning of the specified procedure and until the list window is filled.

v By specifying a starting and ending source line number using the

sourceline-expression parameter.

The sourceline-expression parameter should consist of a valid line number

followed by an optional + (plus sign), or − (minus sign), and an integer. In

addition, a sourceline of $ (dollar sign) can be used to denote the current line

number. A sourceline of @ (at sign) can be used to denote the next line number

to be listed.

All lines from the first line number specified to the second line number specified,

inclusive, are then displayed, provided these lines fit in the list window.

If the second source line is omitted, 10 lines are printed, beginning with the line

number specified in the sourceline parameter.

If the list subcommand is used without parameters, the default number of lines is

printed, beginning with the current source line. The default is 10.

To change the number of lines to list by default, set the special debug program

variable, $listwindow, to the number of lines you want. Initially, $listwindow is set

to 10.

To list the lines 1 through 10 in the current file, enter:

list 1,10

To list 10, or $listwindow, lines around the main procedure, enter:

list main

To list 11 lines around the current line, enter:

list $-5,$+5

To list the next source line to be executed, issue:

pdbx(all) list $

 0: 4 char johnny = ’h’;

 1: 4 char johnny = ’h’;

To just show 1 task, since both are at the same source line:

pdbx(all) on 0 list $

 0: 4 char johnny = ’h’;

To create an alias to list just task 0:

pdbx(all) alias l0 on 0 list

To list line 5:

pdbx(all) l0 5

 0: 5 char jessie = ’d’;

pdbx

Appendix A. Parallel environment tools commands 141

To list lines around the procedure sub:

pdbx(all) l0 sub

 0: 21

 0: 22 /* return ptr to sum of parms, calc and sub1 */

 0: 23 int *sub(char *s, int a, int k)

 0: 24 {

 0: 25 int *tmp;

 0: 26 int it = 0;

 0: 27 int i, j;

 0: 28

 0: 29 /* test calc */

 0: 30 i = 1;

 0: 31 j = i*2;

To change the next line to be listed to line 25:

pdbx(all) move 25

To list the next line to be listed minus two:

pdbx(all) l0 @-2

 0: 23 int *sub(char *s, int a, int k)

Related to this subcommand is the dbx list subcommand.

listi subcommand (of the pdbx command)

listi [procedure | at SourceLine |

address [,address]]

The listi subcommand displays a specified set of instructions from the current

program counter, depending on whether you specify procedure, source line, or

address.

The listi subcommand with the procedure parameter lists instructions from the

beginning of the specified procedure until the list window is filled.

Using the at SourceLine flag with the listi subcommand displays instructions

beginning at the specified source line and continuing until the list window is filled.

The SourceLine variable can be specified as an integer, or as a file name string

followed by a : (colon) and an integer.

Specifying a beginning and ending address with the listi subcommand, using the

address parameters, displays all instructions between the two addresses.

If the listi subcommand is used without flags or parameters, the next $listwindow

instructions are displayed. To change the current size of the list window, use the

set $listwindow=Value command.

load subcommand (of the pdbx command)

load program [program_options]

The load subcommand loads the specified application program to be debugged on

the task(s) in the current context. You can optionally specify program_options to be

passed to the application program. pdbx will look for the program in the current

directory unless a relative or absolute pathname is specified. The load

subcommand is context sensitive. All tasks in the partition must have an application

program loaded before other context sensitive subcommands can be issued. This

pdbx

142 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

subcommand enables you to individually or selectively load programs. If you wish to

load the same program on all tasks in the partition, the name of the program can be

passed as an argument to the pdbx command at startup.

To load the program “mpprob1” on all tasks in the current context, enter:

load mpprob1

map subcommand (of the pdbx command)

map

The map subcommand displays characteristics for each loaded portion of the

application. This information includes the name, text origin, text length, data origin,

and data length for each loaded module.

mutex subcommand (of the pdbx command)

mutex

mutex [<number> ...]

mutex [lock | unlock]

The mutex subcommand displays the current status of all known mutual exclusion

locks in the process. Mutexes to be listed can be specified through the <number>

parameter, or all mutexes will be listed. Users can also choose to display only

locked or unlocked mutexes by using the lock or unlock options.

The information listed for each mutex is as follows:

mutex

Indicates the symbolic name of the mutex, in the form $mmutex_number.

type Indicates the type of the mutex: non-rec (nonrecursive), recursi (recursive)

or fast.

obj_addr

Indicates the memory address of the mutex.

lock Indicates the lock state of the mutex: yes if the mutex is locked, no if not.

owner

If the mutex is locked, indicates the symbolic name of the user thread which

holds the mutex.

Related to this subcommand are the attribute condition and thread

subcommands.

next subcommand (of the pdbx command)

next [number]

The next subcommand runs the application program up to the next source line. The

number parameter specifies the number of times the subcommand runs. If the

number parameter is not specified, next runs once only.

The difference between this and the step subcommand is that if the line contains a

call to a procedure or function, step will stop at the beginning of that block, while

next will not.

pdbx

Appendix A. Parallel environment tools commands 143

If you use the next subcommand in a multi-threaded application program, all the

user threads run during the operation, but the program continues execution until the

running thread reaches the specified source line. By default, breakpoints for all

threads are ignored during the next command. This behavior can be changed using

the $catchbp set variable. If you wish to step the running thread only, use the set

command to set the variable $hold_next. Setting this variable may result in

deadlock, since the running thread may wait for a lock held by one of the blocked

threads.

Related to this subcommand are the nexti, step, stepi, return, cont, and set

subcommands.

nexti subcommand (of the pdbx command)

nexti [number]

The nexti subcommand runs the application program up to the next instruction. The

number parameter specifies the number of times the subcommand will run. If the

number parameter is not specified, nexti runs once only.

The difference between this and the stepi subcommand is that if the line contains a

call to a procedure or function, stepi will stop at the beginning of that block, while

nexti will not.

If you use the nexti subcommand in a multi-threaded application program, all the

user threads run during the operation, but the program continues execution until the

running thread reaches the specified machine instruction. If you wish to step the

running thread only, use the set command to set the variable $hold_next. Setting

this variable may result in deadlock since the running thread may wait for a lock

held by one of the blocked threads.

Related to this subcommand are the next, step, stepi, return, cont, and set

subcommands.

on subcommand (of the pdbx command)

on {group_name | task_id} [subcommand]

The on subcommand sets the current command context used to direct subsequent

subcommands at a specific task or group of tasks. The context can be set on a task

group (by specifying a group_name) or on a single task (by specifying a task_id).

When a context sensitive subcommand is specified, it is directed to the given

context without changing the current command context. Thus, specifying the

optional subcommand enables you to temporarily deviate from the command

context.

Note: The pdbx prompt will be presented after all of the tasks in the temporary

context have completed the specified command. It is possible using <Ctrl-c>

followed by the back or the on command to issue further pdbx commands

in the original context.

By using the on and group subcommands, the number of subcommands issued

and the amount of debug data displayed can be tailored to manageable amounts.

pdbx

144 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

When you switch context using on context_name, and the new context has at least

one task in the running state, a message is displayed stating that at least one task

is in the running state. Thus, no pdbx prompt is displayed until all tasks in this

context are in the debug ready state.

When you switch to a context where all states are in the debug ready state, the

pdbx prompt is displayed immediately.

At the pdbx subset prompt, on context_name causes one of the following to

happen: either a pdbx prompt is displayed; or a message is displayed indicating the

reason why the pdbx prompt will be displayed at a later time. This is generally

because one of the tasks is in running state. See “Context switch when blocked” on

page 16 for more information on the pdbx subset prompt.

At a pdbx prompt, you cannot use on context_name pdbx_command if any of the

tasks in the specified context are running.

Assume you have an application running as 15 tasks, and the output of the group

list subcommand lists the existing task groups as:

all 0:D 1:U 2:D 3:D 4:D 5:D 6:U 7:D

 8:D 9:D 10:R 11:R 12:R 13:U 14:U

johnny 0:D

jessica 2:D 3:D 8:D

un 1:U 6:U 13:U 14:U

run 10:R 11:R 12:R

deb 2:D 3:D 4:D 5:D 8:D 9:D

1. To add a breakpoint for task 0, enter:

on johnny stop at 31

The pdbx debugger responds with:

johnny:[0] stop at "ring.f":31

2. To add breakpoints for all of the tasks in the task group “jessica”, enter:

on jessica stop in ring

The pdbx debugger responds with:

jessica:[0] stop in ring

3. To switch the current context to the task group “johnny”, enter:

on johnny

The pdbx debugger responds with the prompt:

pdbx(johnny)

4. To add a conditional breakpoint for all tasks in the current context, enter:

stop at 48 if len < 1

The pdbx debugger responds with:

johnny:[1] stop at "ring.f":48 if len < 1

5. To view the events that have been set on the task group “jessica”, enter:

on jessica status

The pdbx debugger responds with:

jessica:[0] stop in ring

6. To add a tracepoint for task 2, enter:

on 2

The pdbx debugger responds with the prompt:

pdbx(2)

Then, enter:

trace 57

pdbx

Appendix A. Parallel environment tools commands 145

The pdbx debugger responds with:

2:[0] trace "ring.f":57

7. To view all of the events that have been set, enter:

status all

The pdbx debugger responds with:

2:[0] trace "ring.f":57

johnny:[0] stop at "ring.f":48

johnny:[1] stop at "ring.f":56 if len < 1

jessica:[0] stop in ring

Related to this subcommand is the pdbx group subcommand.

print subcommand (of the pdbx command)

print expression ...

print procedure ([parameters])

The print subcommand does either of the following:

v Prints the value of a list of expressions, specified by the expression parameters.

v Executes a procedure, specified by the procedure parameter, and prints the

return value of that procedure. Parameters that are included are passed to the

procedure.

To display the value of x and the value of y shifted left two bits, enter:

print x, y << 2

To display the value returned by calling the sbrk routine with an argument of 0,

enter:

print sbrk(0)

To display the sixth through the eighth elements of the Fortran character string

a_string, enter:

print &a_string + 5, &a_string + 7/c

Related to this subcommand are the dbx assign and call subcommands, and the

pdbx set subcommand.

quit subcommand (of the pdbx command)

quit

The quit subcommand terminates all program tasks, and ends the pdbx debugging

session. The quit subcommand is context insensitive and has no parameters.

Quitting a debug session in attach mode causes the debugger and all the members

of the original poe application partition to exit.

To exit the pdbx debug program, enter:

quit

registers subcommand (of the pdbx command)

registers

pdbx

146 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

The registers subcommand displays the values of general purpose registers,

system control registers, floating-point registers, and the current instruction register.

Registers can be displayed or assigned to individually by using the following

predefined register names:

$r0 through $r31

for the general purpose registers.

$fr0 through $fr31

for the floating point registers.

$sp, $iar, $cr, $link

for, respectively, the stack pointer, program counter, condition register, and

link register.

By default, the floating-point registers are not displayed. To display the floating-point

registers, use the unset $noflregs command.

Notes:

1. The register value may be set to the 0xdeadbeef hexadecimal value. The

0xdeadbeef hexadecimal value is an initialization value assigned to general

purpose registers at process initialization.

2. The registers command cannot display registers if the current thread is in

kernel mode.

return subcommand (of the pdbx command)

return [procedure]

The return subcommand causes the program to execute until a return to the

procedure, specified by the procedure parameter, is reached. If the procedure

parameter is not specified, execution ceases when the current procedure returns.

search subcommand (of the pdbx command)

/<regular_expression>[/]

?<regular_expression>[?]

The search forward (/) or search backward (?) subcommands allow you to search in

the current source file for the given <regular_expression>. Both forms of search

wrap around. The previous regular expression is used if no regular expression is

given to the current command.

Related to this subcommand is the regcmp subroutine.

set subcommand (of the pdbx command)

set [variable]

set [variable=expression]

The set subcommand defines a value for the set variable. The value is specified by

the expression parameter. The set variable is specified by the variable parameter.

The name of the variable should not conflict with names in the program being

pdbx

Appendix A. Parallel environment tools commands 147

debugged. A variable is expanded to the corresponding expression within other

commands. If the set subcommand is used without arguments, the currently set

variables are displayed.

Related to this subcommand is the unset subcommand.

sh subcommand (of the pdbx command)

sh <command>

The sh subcommand passes the command specified by the command parameter to

the shell on the remote task(s) for execution. The SHELL environment variable

determines which shell is used. The default is the Bourne shell (sh).

Note: The sh subcommand with no arguments is not supported.

To run the ls command on all tasks in the current context, enter:

sh ls

To display contents of the foo.dat data file on task 1, enter:

on 1 cat foo.dat

skip subcommand (of the pdbx command)

skip [number]

The skip subcommand continues execution of the program from the current

stopping point, ignoring the next breakpoint. If a number variable is supplied, skip

ignores that next amount of breakpoints.

Related to this subcommand is the cont subcommand.

source subcommand (of the pdbx command)

source commands_file

The source subcommand reads pdbx subcommands from the specified

commands_file. The commands_file should reside on the node where pdbx was

issued and can contain any commands that are valid on the pdbx command line.

The source subcommand is context insensitive.

To read pdbx subcommands from a file named “jessica”, enter:

source jessica

Related to this subcommand is the dbx source subcommand.

status subcommand (of the pdbx command)

status

status all

A list of pdbx events (breakpoints and tracepoints) can be displayed by using the

status subcommand. You can specify “all” after this command to list all events

pdbx

148 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

(breakpoints and tracepoints) that have been set in all groups and tasks. This is

valid at the pdbx prompt and the pdbx subset prompt.

Because the status command without “all” specified is context sensitive, it will not

display status for events outside the context.

Assume the following commands have been issued, setting various breakpoints and

tracepoints.

on all

stop at 19

trace 21

on 0

trace foo at 21

on 1

stop in func

To display a list of breakpoints and tracepoints for tasks in the current “task 1”

context, enter:

status

The pdbx debugger responds with lines of status like:

1:[0] stop in func

all:[0] stop at "foo.c":19

all:[1] trace "foo.c":21

Notice that the status from the “task 0” context does not get displayed since the

context is on “task 1”. Also notice that event 0 is unique for the “task 1” context and

the “group all” context.

To see an example of status all, enter:

status all

The pdbx debugger responds with:

0:[0] trace foo at "foo.c":21

1:[0] stop in func

all:[0] stop at "foo.c":19

all:[1] trace "foo.c":21

Related to this subcommand are the pdbx stop, trace, and delete subcommands.

step subcommand (of the pdbx command)

step [number]

The step subcommand runs source lines of the program. You specify the number of

lines to be executed with the number parameter. If this parameter is omitted, the

default is a value of 1.

The difference between this and the next subcommand is that if the line contains a

call to a procedure or function, step will enter that procedure or function, while next

will not.

If you use the step subcommand on a multi-threaded program, all the user threads

run during the operation, but the program continues execution until the interrupted

thread reaches the specified source line. By default, breakpoints for all threads are

ignored during the step command. This behavior can be changed using the

$catchbp set variable.

pdbx

Appendix A. Parallel environment tools commands 149

If you wish to step the interrupted thread only, use the set subcommand to set the

variable $hold_next. Setting this variable may result in debugger induced deadlock,

since the interrupted thread may wait for a lock held by one of the threads blocked

by $hold_next.

Note: Use the $stepignore variable of the set subcommand to control the behavior

of the step subcommand. The $stepignore variable enables step to step

over large routines for which no debugging information is available.

Related to this subcommand are the stepi, next, nexti, return, cont, and set

commands.

stepi subcommand (of the pdbx command)

stepi [Number]

The stepi subcommand runs instructions of the program. You specify the number of

instructions to be executed with the number parameter. If the parameter is omitted,

the default is 1.

If used on a multi-threaded program, the stepi subcommand steps the interrupted

thread only. All other user threads remain stopped.

Related to this subcommand are the step, next, nexti, return, cont, and set

subcommands.

stop subcommand (of the pdbx command)

stop if <condition>

stop at <source_line_number> [if <condition>]

stop in <procedure> [if <condition>]

stop <variable> [if <condition>]

stop <variable> at <source_line_number>

[if <condition>]

stop <variable> in <procedure> [if <condition>]

Specifying stop at <source_line_number> causes the breakpoint to be triggered

each time that source line is reached.

Specifying stop in <procedure> causes the breakpoint to be triggered each time

the program counter reaches the first executable source line in the procedure

(function, subroutine).

Using the <variable> argument to stop causes the breakpoint to be triggered when

the contents of the variable changes. This form of breakpoint can be very time

consuming. For better results, when possible, further qualify these breakpoints with

a source_line or procedure argument.

Specify the <condition> argument using the syntax described by “Specifying

expressions” on page 30.

The stop subcommand sets stopping places called “breakpoints” for tasks in the

current context. Use it to mark these stopping places, and then run the program.

When the tasks reach a breakpoint, execution stops and the state of the program

can then be examined. The stop subcommand is context sensitive.

pdbx

150 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

Use the status subcommand to display a list of breakpoints that have been set for

tasks in the current context. Use the delete subcommand to remove breakpoints.

Specifying stop at <source_line_number> causes the breakpoint to be triggered

each time that source line is reached.

Specifying stop in <procedure> causes the breakpoint to be triggered each time

the program counter reaches the first executable source line in the procedure

(function, subroutine).

Using the <variable> argument to stop causes the breakpoint to be triggered when

the contents of the variable changes. This form of breakpoint can be very time

consuming. For better results, when possible, further qualify these breakpoints with

a source_line or procedure argument.

Specify the <condition> argument using the syntax described by “Specifying

expressions” on page 30.

Notes:

1. The pdbx debugger will not attempt to set a breakpoint at a line number when

in a group context if the group members (tasks) have different current source

files.

2. When specifying variable names as arguments to the stop subcommand, fully

qualified names should be used. This should be done because, when a stop

subcommand is issued, a parallel application could be in a different function on

each node. This may result in ambiguity in variable name resolution. Use the

which subcommand to get the fully qualified name for a variable.

To set a breakpoint at line 19 of a program, enter:

stop at 19

The pdbx debugger responds with a message like:

all:[0] stop at "foo.c":19

Related to this subcommand are the dbx stop and which subcommands, and the

pdbx trace, status, and delete subcommands.

tasks subcommand (of the pdbx command)

tasks [long]

With the tasks subcommand, you display information about all the tasks in the

partition. Task state information is always displayed. If you specify “long” after the

command, it also displays the name, ip address, and job manager number

associated with the task.

Following is an example of output produced by the tasks and tasks long

command.

pdbx(others) tasks

 0:D 1:D 2:U 3:U 4:R 5:D 6:D 7:R

pdbx(others) tasks long

 0:Debug ready pe04.kgn.ibm.com 9.117.8.68 -1

 1:Debug ready pe03.kgn.ibm.com 9.117.8.39 -1

 2:Unhooked pe02.kgn.ibm.com 9.117.11.56 -1

 3:Unhooked augustus.kgn.ibm.com 9.117.7.77 -1

 4:Running pe04.kgn.ibm.com 9.117.8.68 -1

pdbx

Appendix A. Parallel environment tools commands 151

5:Debug ready pe03.kgn.ibm.com 9.117.8.39 -1

 6:Debug ready pe02.kgn.ibm.com 9.117.11.56 -1

 7:Running augustus.kgn.ibm.com 9.117.7.77 -1

Related to this subcommand is the pdbx group subcommand.

thread subcommand (of the pdbx command)

thread

thread [<number>...]

thread [info] [<number> ...]

thread [run | wait | susp | term]

thread [hold | unhold] [<number> ...]

thread [current] [<number>]

The thread subcommand displays the current status of all known threads in the

process. Threads to be displayed can be specified through the <number>

parameters, or all threads will be listed. Threads can also be selected by states

using the run, wait, susp, term, or current options. The info option can be used

to display full information about a thread. The hold and unhold options affect

whether the thread is dispatchable when further execution control commands are

issued. A thread that has been held will not be given any execution time until the

unhold option is issued. The thread subcommand displays a column indicating

whether a thread is held or not. No further execution will occur if the interrupted

thread is held.

The information displayed by the thread subcommand is as follows:

thread

Indicates the symbolic name of the user thread, in the form

$tthread_number.

state-k

Indicates the state of the kernel thread (if the user thread is attached to a

kernel thread). This can be run, wait, susp, or term, for running, waiting,

suspended, or terminated.

wchan

Indicates the event on which the kernel thread is waiting or sleeping (if the

user thread is attached to a kernel thread).

state-u

Indicates the state of the user thread. Possible states are running, blocked,

or terminated.

k-tid Indicates the kernel thread identifier (if the user thread is attached to a

kernel thread).

mode Indicates the mode (kernel or user) in which the user thread is stopped (if

the user thread is attached to a kernel thread).

held Indicates whether the user thread has been held.

scope

Indicates the contention scope of the user thread; this can be sys or pro for

system or process contention scope.

function

Indicates the name of the user thread function.

pdbx

152 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

The displayed thread (“>”) is the thread that is used by other pdbx commands that

are thread specific such as:

down

dump

file

func

list

listi

print

registers

up

where

The displayed thread defaults to be the interrupted thread after each execution

control command. The displayed thread can be changed using the current option.

The interrupted thread (“*”) is the thread that stopped first and because it stopped,

in turn caused all of the other threads to stop. The interrupted thread is treated

specially by subsequent step, next, and nexti commands. For these stepping

commands, the interrupted thread is stepped, while all other (unheld) threads are

allowed to continue.

To force only the interrupted thread to execute during execution control commands,

set the $hold_next set variable. Note that this can create a debugger induced

deadlock if the interrupted thread blocks on one of the other threads.

Note that the pdbx documentation uses “interrupted thread” in the same way the

dbx documentation uses “running thread”. Also, the pdbx documentation uses

“displayed thread” in the same way the dbx documentation uses “current thread”.

Related to this subcommand are the attribute condition and mutex

subcommands.

trace subcommand (of the pdbx command)

trace [in <procedure>] [if <condition>]

trace <source_line_number> [if <condition>]

trace <procedure>

[in <procedure>]

[if <condition>]

trace <variable> [in <procedure>]

[if <condition>]

trace <expression> at <source_line_number>

[if <condition>]

Specifying trace with no arguments causes trace information to be displayed for

every source line in your program.

Specifying trace <source_line_number> causes the tracepoint to be triggered each

time that source line is reached.

Specifying trace [in <procedure>] causes the tracepoint to be triggered each time

your program executes a source line within the procedure (function, subroutine).

pdbx

Appendix A. Parallel environment tools commands 153

Using the <variable> argument to trace causes the tracepoint to be triggered when

the contents of the variable changes. This form of tracepoint can be very time

consuming. For better results, when possible, further qualify these tracepoints with

a source_line or procedure argument.

Specify the <condition> argument using the syntax described by “Specifying

expressions” on page 30.

The trace subcommand sets tracepoints for tasks in the current context. These

tracepoints will cause tracing information for the specified procedure, function,

sourceline, expression or variable to be displayed when the program runs. The

trace subcommand is context sensitive.

Use the status subcommand to display a list of tracepoints that have been set in

the current context. Use the delete subcommand to remove tracepoints.

Specifying trace with no arguments causes trace information to be displayed for

every source line in your program.

Specifying trace <source_line_number> causes the tracepoint to be triggered each

time that source line is reached.

Specifying trace [in <procedure>] causes the tracepoint to be triggered each time

your program executes a source line within the procedure (function, subroutine).

Using the <variable> argument to trace causes the tracepoint to be triggered when

the contents of the variable changes. This form of tracepoint can be very time

consuming. For better results, when possible, further qualify these tracepoints with

a source_line or procedure argument.

Specify the <condition> argument using the syntax described by “Specifying

expressions” on page 30.

Notes:

1. The pdbx debugger will not attempt to set a tracepoint at a line number when

in a group context if the group members (tasks) have different current source

files.

2. When specifying variable names as arguments to the trace subcommand, fully

qualified names should be used. This should be done because, when a trace

subcommand is issued, a parallel application could be in a different function on

each node. This may result in ambiguity in variable name resolution. Use the

which subcommand to get the fully qualified name for a variable.

To set a tracepoint for the variable ″foo″ at line 21 of a program, enter:

trace foo at 21

The pdbx debugger responds with a message like:

all:[1] trace foo at "bar.c":21

Related to this subcommand are the dbx trace and which subcommands, and the

pdbx stop, status, and delete subcommands.

unalias subcommand (of the pdbx command)

unalias alias_name

pdbx

154 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

The unalias subcommand removes pdbx command aliases. The alias_name

specified is any valid alias that has been defined within your current pdbx session.

The unalias subcommand is context insensitive.

To remove the alias “p”, enter:

unalias p

Related to this subcommand is the pdbx alias subcommand.

unhook subcommand (of the pdbx command)

unhook

The unhook subcommand enables you to unhook tasks. Unhooking allows tasks to

run without intervention from the pdbx debugger. You can later reestablish control

over unhooked tasks using the hook subcommand. The unhook subcommand is

similar to the detach subcommand in dbx. It is context sensitive and has no

parameters.

1. To unhook task 2, enter:

on 2 unhook

or

on 2

unhook

2. To unhook all the tasks in the task group “rest”, enter:

on rest unhook

or

on rest

unhook

Listing the members of the task group “all” using the list action of the group

subcommand will allow you to check which tasks are hooked, and which are

unhooked. Enter:

group list all

The pdbx debugger will display a list similar to the following:

0:D 1:U 2:D 3:D

Tasks marked with the letter U next to them are unhooked tasks. In this case, task

1 is unhooked. Tasks marked with the letter D are debug ready, hooked tasks. In

this case, tasks 0, 2, and 3 are hooked.

Related to this subcommand is the dbx detach subcommand and the pdbx hook

subcommand.

unset subcommand (of the pdbx command)

unset name

The unset subcommand removes the set variable associated with the specified

name.

Related to this subcommand is the set subcommand.

pdbx

Appendix A. Parallel environment tools commands 155

up subcommand (of the pdbx command)

up [count]

The up subcommand moves the current function up the stack the number of levels

you specify with the count parameter. The current function is used for resolving

names. The default for the count parameter is 1.

The up and down subcommands can be used to navigate through the call stack.

Using these subcommands to change the current function also causes the current

file and local variables to be updated to the chosen stack level.

Related to this subcommand are the down, print, dump, func, file, and where

subcommands.

use subcommand (of the pdbx command)

use [directory ...]

The use subcommand sets the list of directories to be searched when the pdbx

debugger looks for source files. If the subcommand is specified without arguments,

the current list of directories to be searched is displayed.

The @ (at sign) is a special symbol that directs pdbx to look at the full path name

information in the object file, if it exists. If you have a relative directory called @ to

search, you should use ./@ in the search path.

The use subcommand uses the + (plus sign) to add more directories to the list of

directories to be searched. If you have a directory named +, specify the full path

name for the directory (for example, ./+ or /tmp/+).

Related to this subcommand are the file and list subcommands.

whatis subcommand (of the pdbx command)

whatis <name>

The whatis subcommand displays the declaration of what you specify as the name

parameter. The name parameter can designate a variable, procedure, or function

name, optionally qualified with a block name.

Related to this subcommand are the whereis and which subcommands.

where subcommand (of the pdbx command)

where

The where subcommand displays a list of active procedures and functions. For

example:

pdbx(all) where

init_trees(), line 23 in "funcs5.c"

colors(depth = 30, str = "This is it"), line 61 in "funcs5.c"

newmain(), line 59 in "funcs2.c"

f6(), line 25 in "funcs2.c"

main(argc = 1, argv = 0x2ff21c58), line 125 in "funcs.c"

pdbx

156 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

Related to this subcommand are the dbx up and down subcommands.

whereis subcommand (of the pdbx command)

whereis identifier

The whereis subcommand displays the full qualifications of all the symbols whose

names match the specified identifier. The order in which the symbols print is not

significant.

Related to this subcommand are the whatis and which commands.

which subcommand (of the pdbx command)

which identifier

The which subcommand displays the full qualification of the given identifier. The full

qualification consists of a list of the outer blocks with which the identifier is

associated.

Related to this subcommand are the whatis and whereis subcommands.

pdbx

Appendix A. Parallel environment tools commands 157

pvt

NAME

pvt – Invokes the Profile Visualization Tool (PVT) in either its graphical-user-
interface or command-line mode.

SYNOPSIS

pvt [-c [one_or_more_file_names]]

pvt -h

The pvt command starts the PVT in either its graphical-user-interface mode, or, if

the -c flag is specified, its command-line mode. In either mode, you can specify one

or more file names to start the PVT with profile data showing.

FLAGS

-c Specifies that the PVT should be started in command-line mode. Refer to

“Using the Profile Visualization Tool’s command line interface” on page 80 for

information on the subcommands you can issue once the PVT is running in this

mode.

-h Displays usage.

DESCRIPTION

The PVT is a postmortem analysis tool. It is designed to process profile data files

generated by the PCT used in application profiling. You can run the PVT in either its

graphical-user-interface mode, or, if the -c flag is specified, its command-line mode.

After processing profile data, you can view the results in the PVT’s

graphical-user-interface display, outputted to report files, or saved to a summary file.

The PVT provides a command-line interface to process individual profile files

directly into a summary file without initializing the graphic display. The

command-line interface also enables you to generate textual profile reports.

The pvt command’s subcommands (for controlling the PVT in command-line mode)

are listed alphabetically under “Subcommands of the pvt command” on page 159.

EXAMPLES

To start the PVT in graphical-user-interface mode showing an empty

graphical-user-interface:

pvt

To start the PVT in graphical-user-interface mode with profile data showing:

pvt one_or_ more_file_names

To start the PVT in command-line mode:

pvt -c

To start the PVT in command-line mode with profile data showing:

pvt -c one_or_more_file_names

RELATED INFORMATION

Commands: pct(1)

pvt

158 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

Subcommands of the pvt command

There are a number of subcommands that are available when using the PVT in

command line mode. This includes subcommands for exporting profile data to a

specified file, loading profile data files into a session, generating textual reports on

profile data, and so on. For information on the PVT command, see “pvt” on page

158.

exit subcommand (of the pvt command)

exit

The exit subcommand ends the command line session.

export subcommand (of the pvt command)

export output_file_name

The export subcommand allows you to export profile data to a specified file. The

suffix .txt will be appended to the specified file name.

The currently loaded profile data is written to the user-specified file in plain text

format, so the data can be loaded easily into a spreadsheet tool, like Lotus 1–2–3.

The data that is loaded into the tool can be grouped into the following types of

records:

v Profile-session records associated with each process

v Individual function or thread records

v Function statistics records.

help subcommand (of the pvt command)

help [command_name]

The help subcommand can either list all of the PVT’s subcommands, or else return

the syntax of a particular subcommand.

command_name

refers to the name of the PVT subcommand you want help on.

For example, to get a listing of all of the PVT subcommands:

pvt> help

To get the syntax of the report subcommand:

pvt> help report

load subcommand (of the pvt command)

load one_or_more_file_names

The load subcommand loads a set of profile data files into the session. If a set of

data already exists, then the existing data is discarded and the newly loaded data

becomes the current data to be used in future actions.

pvt

Appendix A. Parallel environment tools commands 159

|
|
|
|
|

report subcommand (of the pvt command)

report [list | output_file_name |

″one_or_more_report_names″ output_file_name |

″one_or_more_report_ids″ output_file_name]

The report subcommand generates textual reports on the profile data. To show a list

of available report types, enter:

report list

The result of the command will look something like:

v [0] call_count: function call count report

v [1] wclock: wall clock timer report

v [2] ru_cpu: CPU usage reports

v [3] ru_mem: memory usage report

v [4] ru_paging: paging activities reports

v [5] ru_cswitch: context switch activities reports

v [6] pmc_cycle: instructions per cycle hardware counter reports

v [7] pmc_fpu: floating point hardware counter reports

v [8] pmc_fxu: fixed-point hardware counter reports

v [9] pmc_branch: branch hardware counter reports

v [10] pmc_lsu: load and store hardware counter reports

v [11] pmc_cache: cache hardware counter reports

v [12] pmc_misc: miscellaneous hardware counter reports

To generate all the available reports to a file, enter:

report output_file_name

To generate reports by report name, enter:

report "one_or_more_report_names" output_file_name

For example:

report "wclock,ru_cpu" output

To generate reports by report id, enter:

report "one_or_more_report_ids" output_file_name

For example:

report "1,2" output

The report names or report ids in double quotes must be separated by a comma

with no blank space in between. No matter how many reports are selected in one

report command, all the reports are outputted to a single file specified in the report

command.

sum subcommand (of the pvt command)

sum summary_file_name

The sum subcommand creates a summary file of all the loaded data. The merged

summary data is written to the file specified in the command.

pvt

160 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

slogmerge

NAME

slogmerge – Merges multiple UTE interval files into a single SLOG file.

SYNOPSIS

slogmerge [-?] [-n number_of_files] [-c number_of_bytes_per_frame]

[-o output_file_name] [-s range] [-m number_of_available_markers]

[-r factor] [-g] input_file_name_prefix

The slogmerge command merges multiple UTE interval trace files (whose names

begin with the input_file_name_prefix) into a single SLOG file. The

input_file_name_prefix must be the last item on the command line.

FLAGS

-? Prints out the usage information for the slogmerge command instead of

performing the actual merge.

-n number_of_files

Specifies the number of input UTE interval files to be merged. The default value

is 1.

-c number_of_bytes_per_frame

Specifies the number of bytes per frame. The default is 128K bytes.

-o output_file_name

Specifies the name for the output file — the merged SLOG file. The slogmerge

utility will create a file with a .slog extension. If you do not specify an output file

name, the default value is trcfile.slog in the current directory.

-s range

Specifies a list of MPI tasks to be merged. The task IDs in the list can be

separated by either a comma (,) or a hyphen (-). If used, the hyphen represents

a range of tasks. For example, -s 0,2,4,5-7 indicates that the user wants to

merge threads with MPI task IDs 0, 2, 4, 5, 6, and 7. By default, all

tasks/threads in all UTE interval files will be merged.

-m number_of_available_markers

Specifies the number of spaces to reserve for user markers in the SLOG

interval table. The number of available markers should not be less than the

actual number of uniquely named user markers in the UTE trace file, or the

slogmerge utility will quit. The default number of available markers is 20.

-r factor

specifies the factor by which spaces for ″pseudo records″ are reserved. The

number of reserved slots for pseudo records is the number of threads in the

trace file times the factor. If not specified, the default is 2.

 Pseudo records are SLOG-specific interval records that are duplicates of certain

internal records for visualization purposes. The number of pseudo records could

be fairly high, depending on the number of nested states and their time span,

and the number of internal records crossing SLOG frame boundaries in the

trace. If the number of created pseudo records is more than the reserved slots

during the merge process, the slogmerge utility will quit. If this happens, you

should specify a larger number for this option to reserve more slots for pseudo

records.

slogmerge

Appendix A. Parallel environment tools commands 161

-g Merge interval files without using global clock records. This is needed when

processing interval files generated on nodes with no high performance switch.

DESCRIPTION

The slogmerge command merges multiple UTE interval trace files into a single

SLOG file. A number (as indicated by the -n option) of UTE files beginning with the

input_file_name_prefix will be merged into an output file. The name of this output

file is the one specified by the -o option, or, if the -o option is not specified, the file

trcfile.ute in the current directory by default. The input_file_name_prefix must be the

last item in the command line.

ENVIRONMENT VARIABLES

UTEPROFILE

Specifies the name of the file description profile. If not set, the file

/usr/lpp/ppe.perf/etc/profile.ute is the default description profile. This variable

is intended for use by IBM support personnel.

EXAMPLES

To merge 5 UTE interval trace files that begin with the prefix mytrace into a single

SLOG file:

slogmerge -n 5 mytrace

The above example will create an SLOG file with the default output file name

trcfile.ute. To specify your own output file name, use the -o option.

slogmerge -n 5 -o mergedtrc.ute mytrace

To additionally specify that only the MPI tasks 2, 4, and 6 through 9 should be

merged into the SLOG file, use the -s option.

slogmerge -n 5 -o mergedtrc.ute -s 2,4,6-9 mytrace

FILES

profile.ute default description profile

RELATED INFORMATION

Commands: uteconvert(1), utemerge(1), utestats(1)

slogmerge

162 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

uteconvert

NAME

uteconvert – Converts AIX event trace files into UTE internal trace files.

SYNOPSIS

uteconvert [-?] [-n number_of_files]

[-o {output_file_name | output_file_name_prefix}] [-r]

{input_file_name | input_file_name_prefix}

The uteconvert command converts one or more AIX event trace files into one or

more UTE interval trace files. The input_file_name (for converting a single AIX

event trace file) or input_file_name_prefix (for converting multiple AIX event trace

files) must be the last item on the command line.

FLAGS

-? Prints out usage information for the uteconvert command instead of converting

AIX trace files.

-n number_of_files

Specifies the number of AIX event trace files to be converted. If not specified,

the default is 1.

-o {output_file_name | output_file_name_prefix}

If the -n option specifies the number of files as 1 (the default), the -o option

specifies the name of the resulting UTE interval file.

 If the -n option specifies the number of files as greater than 1, the -o option

specifies the file name prefix for the resulting UTE interval files. The names of

the output files are formed by concatenating the given prefix with a node

identifier, starting from 0.

-r removes AIX trace files after they have been processed.

DESCRIPTION

The uteconvert command converts one or more AIX event trace files into one or

more UTE interval trace files. If the -n option specifies the number of files to be

converted as 1 (the default), then you supply a single input_file_name to the

uteconvert subcommand. If instead, the -n option specifies the number of files to

be converted as greater than 1, then an input_file_name_prefix is supplied. The

input_file_name or input_file_name_prefix must be the last item on the command

line.

ENVIRONMENT VARIABLES

UTEPROFILE

Specifies the name of the file description profile. If not set, the file

profile.ute in the current directory is the default description profile. This

variable is intended for use by IBM support personnel.

EXAMPLES

To convert the AIX trace file mytrace into a UTE interval trace file:

uteconvert mytrace

uteconvert

Appendix A. Parallel environment tools commands 163

To convert five trace files with the prefix mytraces into UTE interval trace files:

uteconvert -n 5 mytraces

FILES

profile.ute default description profile.

RELATED INFORMATION

Commands: slogmerge(1), utemerge(1), utestats(1)

uteconvert

164 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

utemerge

NAME

utemerge – Merges multiple UTE interval files into a single UTE interval file.

SYNOPSIS

utemerge [-?] [-n number_of_files] [-o output_file_name]

 [-s range] [-g] input_file_name_prefix

The utemerge command merges multiple UTE interval trace files (whose names

begin with the input_file_name_prefix) into a single UTE file. The

input_file_name_prefix must be the last item on the command line.

FLAGS

-? Prints out the usage information for the utemerge command instead of

performing the actual merge.

-n number_of_files

Specifies the number of input UTE interval files to be merged. The default value

is 1.

-o output_file_name

Specifies the name for the output file — the merged UTE file. If not specified,

the default value is trcfile.ute in the current directory.

-s range

Specifies a list of MPI tasks to be merged. The task IDs in the list can be

separated by either a comma (,) or a hyphen (-). If used, the hyphen represents

a range of tasks. For example, -s 0,2,4,5-7 indicates that the user wants to

merge threads with MPI task IDs 0, 2, 4, 5, 6, and 7. By default, all

tasks/threads in all UTE interval files will be merged.

-g Merges interval files without using global clock results. This is needed when

processing interval files generated on nodes with no SP switch.

DESCRIPTION

The utemerge command merges multiple UTE interval trace files into a single UTE

interval trace file. A number (as indicated by the -n option) of UTE files beginning

with the input_file_name_prefix will be merged into an output file. The name of this

output file is the one specified by the -o option, or, if the -o option is not specified,

the file trcfile.ute in the current directory by default. The input_file_name_prefix must

be the last item in the command line.

ENVIRONMENT VARIABLES

UTEPROFILE

Specifies the name of the file description profile. If not set, the file

/usr/lpp/ppe.perf/etc/profile.ute is the default description profile. This variable

is intended for use by IBM support personnel.

EXAMPLES

To merge 5 UTE interval trace files that begin with the prefix mytrace into a single

UTE file:

utemerge -n 5 mytrace

utemerge

Appendix A. Parallel environment tools commands 165

||
|

The above example will create a UTE file with the default output file name

trcfile.ute. To specify your own output file name, use the -o option.

utemerge -n 5 -o mergedtrc.ute mytrace

To additionally specify that only the MPI tasks 2, 4, and 6 through 9 should be

merged into the UTE file, use the -s option.

utemerge -n 5 -o mergedtrc.ute -s 2,4,6-9 mytrace

FILES

profile.ute default description profile

RELATED INFORMATION

Commands: uteconvert(1), slogmerge(1), utestats(1)

utemerge

166 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

utestats

NAME

utestats – Generates statistics tables from UTE interval files.

SYNOPSIS

utestats [-?] [-o output_file_name]

[-B number_of_bins] input_file [input_file]...

The utestats command generates statistics tables from one or more UTE interval

file. By default, six two-dimensional tables are generated. These tables are:

v Time Bin vs. Node

v Thread vs. Event Type

v Event Type vs. Thread

v Node vs. Event Type

v Event Type vs. Node

v Node vs. Processor

The computed statistic for all tables is the sum of the duration. By default, the

statistics tables will be written to standard output. You can optionally save the

statistics tables to a file using the -o flag.

FLAGS

-? Prints out the usage information for the utestats command instead of

generating statistics tables.

-o output_file_name

Specifies the name of a file to which the statistics tables will be saved. If not

specified, the statistics tables will be written to standard output.

-B number_of_bins

Specifies the number of bins in the Time vs. Node table. The default is 50.

DESCRIPTION

The utestats utility is able to take individual UTE interval files or a merged UTE

interval file as input. If a number of individual UTE interval files are specified, the

timestamps in each file will start at 0 without alignment with respect to global clock

values. If, instead, a merged UTE interval file is specified, the timestamps of

records from different nodes will already have been adjusted with respect to the

global clock value.

By default, six two-dimensional tables are generated. These tables are:

v Time Bin vs. Node

v Thread vs. Event Type

v Event Type vs. Thread (a row/column transposition of the Thread vs. Event Type

table)

v Node vs. Event Type

v Event Type vs. Node (a row/column transposition of the Node vs. Event Type

table)

v Node vs. Processor

utestats

Appendix A. Parallel environment tools commands 167

The computed statistic for all the tables is the sum of the duration. As you can see,

several tables are simply row/column transpositions of other tables. These

transposed tables are provided so that a program used to visualize the tables does

not have to transpose a table in order to show a transposed view.

The output of the utestats command is written in tab-separated-value format; each

line of output is a row of a table, and columns in a row are separated by a tab

character. Tables are separated by a Form Feed character (0x0c). This format is

used to make it easy to import a utestats output file into a spreadsheet program.

A Node vs. Processor table would look like the following (where the tabs have been

replaced by spaces to make the column alignment clearer).

node/cpu 0 1

 0 2.823739 2.258315

 1 0.873746 4.241253

 2 0.956515 4.322891

 3 0.853188 4.334650

The first value ″node/cpu″ is the name of the table. It consists of the row title

followed by a ″/″ followed by a column title. This table contains statistics aggregated

over interval records whose field values for ″node″ and ″cpu″ are the same. The

values ″node″ and ″cpu″ are the field names as stored in the UTE profile file. The

rest of the values in the first row are the column labels; these are the values that

appeared in the ″cpu″ field in at least one interval record.

With other rows, the first field is the row label; it is a value that appeared in the

node field in at least one interval record. The other fields in a row are the

accumulated duration of all interval records with the same (″node″, ″cpu″) pair of

values. For example, the accumulated duration of all interval records for ″cpu″ 1 of

″node″ 0 was 2.258315 seconds.

ENVIRONMENT VARIABLES

UTEPROFILE

Specifies the name of the file description profile. If not set, the file

profile.ute in the current directory is the default description profile. This

variable is intended for use by IBM support personnel.

EXAMPLES

To generate statistics tables for a single UTE interval file:

utestats mytrace.ute

The above example will write the statistics tables to standard output. To redirect the

output to a file, use the -o option.

utestats -o stattables mytrace.ute

You can also specify multiple UTE interval files from which statistics should be

generated.

utestats mytrace.ute mytrace2.ute mytrace3.ute

FILES

profile.ute default description profile

RELATED INFORMATION

Commands: uteconvert(1), utemerge(1)

utestats

168 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

Appendix B. Command line flags for normal or attach mode

Table 17 lists the command line flags that poe and pdbx use, indicating which ones

are valid in normal and in attach debugging mode. When starting in attach mode,

the debugger gives a message listing the invalid flags used, and then exits.

 Table 17. Command Line Flags for Normal or Attach Mode

Flag Description Normal Mode Attach Mode

-procs number of processors yes no

-hostfile name of host list file yes no

-hfile name of host list file yes no

-infolevel message reporting level yes yes

-ilevel message reporting level yes yes

-retry wait for processors yes no

-resd directive to use Resource Manager yes no

-euilib eui library to use yes no

-euidevice adapter set to use for message passing. yes no

-euidevelop EUI develop mode yes no

-newjob submit new PE jobs without exiting PE no no

-pmdlog use pmd logfile yes yes

-savehostfile list of hosts from resource manager yes no

-cmdfile PE command file no no

-stdoutmode STDOUT mode yes no

-stdinmode STDIN mode yes no

-labelio label output yes yes - debugger only

-euilibpath eui library path yes no

-pgmmodel programming model no no

-retrycount retry count for node allocation yes no

-rmpool default pool for job manager yes no

-cpu_use cpu usage yes no

-adapter_use adapter usage yes no

-pulse poe pulse no no

-d nesting depth of program blocks yes yes

-I (upper case i) path to search for source files yes yes

-x prevents the dbx command from stripping

trailing underscore in Fortran

yes yes

-a start in attach mode N/A yes

© Copyright IBM Corp. 1993, 2006 169

|
|
|

170 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

Appendix C. Profiling programs with the AIX prof and gprof

commands

The difference between profiling serial and parallel applications with the AIX

profilers is that serial applications can be run to generate a single profile data file,

while a parallel application can be run to produce many.

You request parallel profiling by setting the compile flag to -p or -pg as you would

with serial compilation. The parallel profiling capability of PE creates a monitor

output file for each task.

AIX 5L V5.3 TL 5300-05 allows the profiling output files to have a user-specified

name, depending on the setting of PROF and GPROF environment variables (the

PROF and GPROF environment variables were not supported in AIX 5.2). With AIX

5L V5.3 TL 5300-05, there is additional profiling support for threads and options that

affect the type of profiling data that is collected, in addition to other factors that also

affect how the profiling output files will be named.

The files are created in the current directory and are named based on the settings

of the PROF and GPROF environment variables, as described below. In all cases

taskid is a number between 0 and one less than the number of tasks.

v When neither PROF nor GPROF are set, the default file names are

mon.taskid.out or gmon.taskid.out, respectively.

v When an alternative file name is specified with PROF, the parallel profiling output

file names are filename.taskid.out.

v When GPROF is specified, the resulting output file names are a factor of the

keywords specified in the GPROF environment variable, as documented by the

AIX 5L V5.3 TL 5300-05 gprof command, where the resulting file name will have

the taskid value appended in the filename prefix string (as defined by the

GPROF filename: keyword). For example, the following combinations of file

names are possible, based on the GPROF settings, for parallel profiling output

files:

– For multi file-type: prefix-processname-pid.taskid.out

– For multithread file-type: prefix-processname-pid-
Pthreadthreaded.taskid.out

The prefix default is gmon. You can define your own prefix by using the filename

parameter of the GPROF environment variable. Note that the position where the

taskid is appended in the file name has changed for parallel profiling output files

on AIX 5L V5.3 TL 5300-05.

In addition, with the added capabilities of the AIX 5L V5.3 TL 5300-05 GPROF

environment variable, a program compiled with -pg potentially produces multiple

output files in both the serial and parallel cases, if profile:thread is specified as

part of GPROF. Furthermore, thread profiling capability is only available with

profiling output files that are created with AIX 5L V5.3 TL 5300-05. It is strongly

suggested that you review the information on the PROF and GPROF environment

variables, and the prof and gprof commands in AIX 5L Commands Reference and

AIX 5L General Programming Concepts: Writing and Debugging Programs.

Following the traditional method of profiling using the AIX operating system, you

compile a serial application and run it to produce a single profile data file that you

can then process using either the prof or gprof commands. With a parallel

© Copyright IBM Corp. 1993, 2006 171

|

|
|
|
|

|

|

|

|

|

application, you compile and run it to produce a profile data file for each parallel

task. You can then process one, some, or all the data files produced using either

the prof or gprof commands.

Table 18 describes how to profile parallel programs. For comparison, the steps

involved in profiling a serial program are shown in the left-hand column of the table.

 Table 18. Profiling a parallel program, compared to profiling a serial program

To Profile a Serial Program: To Profile a Parallel Program:

Step 1: Compile the application

source code using the cc

command with either the -p or

-pg flag.

Step 1: Compile the application source code using the command mpcc_r (for C

programs), mpCC_r (for C++ programs), or mpxlf_r (for Fortran programs) as

described in IBM Parallel Environment: Operation and Use, Volume 1. You

should use one of the standard profiling compiler options – either -p or -pg – on

the compiler command. For more information on the compiler options -p and -pg,

refer to their use on the cc command as described in AIX 5L Commands

Reference and AIX 5L General Programming Concepts: Writing and Debugging

Programs.

Step 2: Run the executable

program to produce a profile data

file. The file name is based on the

setting of the PROF keyword, in

which mon.out is the default file

name.

The file name produced is based

on the options that are specified

in the GPROF keyword, with

gmon as the default prefix.

Step 2: Before you run the parallel program, set the environment variable

MP_EUILIBPATH=/usr/lpp/ppe.poe/lib/profiled:/usr/lib/profiled:/lib/profiled :

/usr/lpp/ppe.poe/lib. If your message passing library is not in

/usr/lpp/ppe.poe/lib, substitute your message passing library path. Run the

parallel program. When the program ends, it generates a profile data file for each

parallel task.

The output file for source code that is compiled with the -p option is based on the

PROF keyword setting plus the taskid. In this case, mon.taskid.out is the

default.

The file name produced is based on the options that are specified in the GPROF

keyword, with gmon as the default prefix and the taskid appended. In this case,

gmon.taskid.out is the default.

Note: The current directory must be writable from all remote nodes. Otherwise,

the profile data files will have to be manually moved to the home node for

analysis with prof and gprof. You can also use the mcpgath command to move

the files. See IBM Parallel Environment: Operation and Use, Volume 1 for more

about mcpgath.

172 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

||

||

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

Table 18. Profiling a parallel program, compared to profiling a serial program (continued)

To Profile a Serial Program: To Profile a Parallel Program:

Step 3: Use either the prof or the

gprof command to process the

profile data file. The profile data

files are based on the PROF and

GPROF environment variable

settings.

Step 3: Use either the prof or gprof command to process the profile data files.

The file names are based on the PROF and GPROF environment variable

settings. Note that the position in the file name in which taskid is appended has

changed for parallel profiling output files on AIX 5L V5.3 TL 5300-05.

You can process one, some, or all of the data files created during the run. You

must specify the name(s) of the profile data file(s) to read, however, because the

prof and gprof commands read mon.out or gmon.out by default. On the prof

command, use the -m flag to specify the name(s) of the profile data file(s) it

should read. For example, to specify the profile data file for task 0 with the prof

command:

Assuming the default case, ENTER

prof -m mon.0.out

You can also specify that the prof command should take profile data from some

or all of the profile data files produced. For example, to specify three different

profile data files – the ones associated with tasks 0, 1, and 2 – on the prof

command:

ENTER

prof -m mon.0.out mon.1 .out mon.2.out

On the gprof command, you simply specify the name(s) of the profile data file(s)

it should read on the command line. You must also specify the name of the

program on the gprof command, but no option flag is needed. For example, to

specify the profile data file for task 0 with the gprof command:

Assuming the default case, ENTER

gprof program gmon.0.out

As with the prof command, you can also specify that the gprof command should

take profile data from some or all of the profile data files produced. For example,

to specify three different profile data files – the ones associated with tasks 0, 1,

and 2 – on the gprof command:

ENTER

gprof program gmon.0.out gmon.1.out gmon.2.out

The parallel utility, mp_profile(), may also be used to selectively profile portions of

a program. To start profiling, call mp_profile(1). To suspend profiling, call

mp_profile(0). The final profile data set will contain counts and CPU times for the

program lines that are delimited by the start and stop calls. In C, the calls are

mpc_profile(1), and mpc_profile(0). By default, profiling is active at the start of the

user’s executable.

Note: Like the sequential version of prof/gprof, if more than one profile file is

specified, the parallel version of the prof/gprof command output shows the

sum of the profile information in the given profile files. There is no statistical

analysis contacted across the multiple profile files.

Appendix C. Profiling programs with the AIX prof and gprof commands 173

|

||

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|

|
|
|

174 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

Appendix D. Supported IBM System p5 PMAPI hardware

counter groupings

The list of supported hardware counter groupings varies, depending on the IBM

System p5 hardware you are using:

v “IBM System p5 hardware counter groupings”

v “IBM System p5 Model 575 (POWER5+) hardware counter groupings” on page

182

IBM System p5 hardware counter groupings

Group name

v Group description

v Event counted in counter 0

v Event counted in counter 1

v ...

v Event counted in counter 5

pm_utilization

v (CPI and utilization data)

v 0: Run cycles

v 1: Instructions completed

v 2: Instructions dispatched

v 3: Processor cycles

v 4: Instructions completed

v 5: Run cycles

Note: Duplicate events appear only once in the Data View of the Profile

Visualization Tool.

pm_lsu1

v (LSU LRQ and LMQ events)

v 0: LRQ slot 0 allocated

v 1: LRQ slot 0 valid

v 2: LMQ slot 0 allocated

v 3: LMQ slot 0 valid

v 4: Instructions completed

v 5: Run cycles

pm_lsu2

v (LSU SRQ events)

v 0: SRQ slot 0 allocated

v 1: SRQ slot 0 valid

v 2: SRQ sync duration

v 3: Cycles SRQ full

v 4: Instructions completed

v 5: Run cycles

pm_prefetch1

© Copyright IBM Corp. 1993, 2006 175

|
|

|

|
|

|

|
|

v (Prefetch stream allocation)

v 0: Instructions fetched missed L2

v 1: Cycles at least 1 instruction fetched

v 2: D cache out of prefetch streams

v 3: D cache new prefetch stream allocated

v 4: Instructions completed

v 5: Run cycles

pm_misc_load

v (Non-cacheable loads and stcx events)

v 0: Stcx failed

v 1: Stcx passes

v 2: LSU0 non-cacheable loads

v 3: LSU1 non-cacheable loads

v 4: Instructions completed

v 5: Run cycles

pm_branch_miss

v (Branch mispredict)

v 0: TLB misses

v 1: SLB misses

v 2: Branch mispredictions due to CR bit setting

v 3: Branch mispredictions due to target address

v 4: Instructions completed

v 5: Run cycles

pm_L1_slbmiss

v (L1 load and SLB misses)

v 0: Data SLB misses

v 1: Instruction SLB misses

v 2: LSU0 L1 D cache load misses

v 3: LSU1 L1 D cache load misses

v 4: Instructions completed

v 5: Run cycles

pm_L1_dtlbmiss_4K

Note: This counter is not supported on IBM System p5 Model 575 servers.

v (L1 load references and 4K Data TLB references and misses)

v 0: Data TLB reference for 4K page

v 1: Data TLB miss for 4K page

v 2: LSU0 L1 D cache load references

v 3: LSU1 L1 D cache load references

v 4: Instructions completed

v 5: Run cycles

pm_L1_dtlbmiss_16M

Note: This counter is not supported on IBM System p5 Model 575 servers.

v (L1 store references and 16M Data TLB references and misses)

176 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|

|

v 0: Data TLB reference for 16M page

v 1: Data TLB miss for 16M page

v 2: LSU0 L1 D cache store references

v 3: LSU1 L1 D cache store references

v 4: Instructions completed

v 5: Run cycles

pm_dsource1

v (L3 cache and memory data access)

v 0: Data loaded from L3

v 1: Data loaded from local memory

v 2: Flushes

v 3: Instructions completed

v 4: Instructions completed

v 5: Run cycles

pm_dsource2

v (L3 cache and memory data access)

v 0: Data loaded from L3

v 1: Data loaded from local memory

v 2: Data loaded missed L2

v 3: Data loaded from remote memory

v 4: Instructions completed

v 5: Run cycles

pm_dsource_L2

v (L2 cache data access)

v 0: Data loaded from L2.5 shared

v 1: Data loaded from L2.5 modified

v 2: Data loaded from L2.75 shared

v 3: Data loaded from L2.75 modified

v 4: Instructions completed

v 5: Run cycles

pm_dsource_L3

v (L3 cache data access)

v 0: Data loaded from L3.5 shared

v 1: Data loaded from L3.5 modified

v 2: Data loaded from L3.75 shared

v 3: Data loaded from L3.75 modified

v 4: Instructions completed

v 5: Run cycles

pm_isource1

v (Instruction source information)

v 0: Instruction fetched from L3

v 1: Instruction fetched from L1

v 2: Instructions fetched from prefetch

v 3: Instruction fetched from remote memory

Appendix D. Supported IBM System p5 PMAPI hardware counter groupings 177

v 4: Instructions completed

v 5: Run cycles

pm_isource2

v (Instruction source information)

v 0: Instructions fetched from L2

v 1: Instruction fetched from local memory

v 2: Instructions completed

v 3: No instructions fetched

v 4: Instructions completed

v 5: Run cycles

pm_isource_L2

v (L2 instruction source information)

v 0: Instruction fetched from L2.5 shared

v 1: Instruction fetched from L2.5 modified

v 2: Instruction fetched from L2.75 shared

v 3: Instruction fetched from L2.75 modified

v 4: Instructions completed

v 5: Run cycles

pm_isource_L3

v (L3 instruction source information)

v 0: Instruction fetched from L3.5 shared

v 1: Instruction fetched from L3.5 modified

v 2: Instruction fetched from L3.75 shared

v 3: Instruction fetched from L3.75 modified

v 4: Instructions completed

v 5: Run cycles

pm_fpu1

v (Floating Point events)

v 0: FPU executed FDIV instruction

v 1: FPU executed multiply-add instruction

v 2: FPU executing FMOV or FEST instructions

v 3: FPU executed FEST instruction

v 4: Instructions completed

v 5: Run cycles

pm_fpu2

v (Floating Point events)

v 0: FPU executed one flop instruction

v 1: FPU executed FSQRT instruction

v 2: FPU executed FRSP or FCONV instructions

v 3: FPU produced a result

v 4: Instructions completed

v 5: Run cycles

pm_fpu3

v (Floating point events)

178 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

v 0: FPU received denormalized data

v 1: FPU stalled in pipe3

v 2: FPU0 produced a result

v 3: FPU1 produced a result

v 4: Instructions completed

v 5: Run cycles

pm_fpu4

v (Floating point events)

v 0: FPU executed single precision instruction

v 1: FPU executed store instruction

v 2: Instructions completed

v 3: LSU executed Floating Point load instruction

v 4: Instructions completed

v 5: Run cycles

pm_fpu5

v (Floating point events by unit)

v 0: FPU0 executed FSQRT instruction

v 1: FPU1 executed FSQRT instruction

v 2: FPU0 executed FEST instruction

v 3: FPU1 executed FEST instruction

v 4: Instructions completed

v 5: Run cycles

pm_fpu6

v (Floating point events by unit)

v 0: FPU0 received denormalized data

v 1: FPU1 received denormalized data

v 2: FPU0 executed FMOV or FEST instructions

v 3: FPU1 executing FMOV or FEST instructions

v 4: Instructions completed

v 5: Run cycles

pm_fpu7

v (Floating point events by unit)

v 0: FPU0 executed FDIV instruction

v 1: FPU1 executed FDIV instruction

v 2: FPU0 executed FRSP or FCONV instructions

v 3: FPU1 executed FRSP or FCONV instructions

v 4: Instructions completed

v 5: Run cycles

pm_fpu8

v (Floating point events by unit)

v 0: FPU0 stalled in pipe3

v 1: FPU1 stalled in pipe3

v 2: Instructions completed

v 3: FPU0 executed FPSCR instruction

Appendix D. Supported IBM System p5 PMAPI hardware counter groupings 179

v 4: Instructions completed

v 5: Run cycles

pm_fpu9

v (Floating point events by unit)

v 0: FPU0 executed single precision instruction

v 1: FPU1 executed single precision instruction

v 2: LSU0 executed Floating Point load instruction

v 3: LSU1 executed Floating Point load instruction

v 4: Instructions completed

v 5: Run cycles

pm_fpu10

v (Floating point events by unit)

v 0: FPU0 executed multiply-add instruction

v 1: FPU1 executed multiply-add instruction

v 2: Instructions completed

v 3: FPU1 executed FRSP or FCONV instructions

v 4: Instructions completed

v 5: Run cycles

pm_fpu11

v (Floating point events by unit)

v 0: FPU0 executed add, mult, sub, cmp or sel instruction

v 1: FPU1 executed add, mult, sub, cmp or sel instruction

v 2: FPU0 produced a result

v 3: Instructions completed

v 4: Instructions completed

v 5: Run cycles

pm_fpu12

v (Floating point events by unit)

v 0: FPU0 executed store instruction

v 1: FPU1 executed store instruction

v 2: LSU0 executed Floating Point load instruction

v 3: Instructions completed

v 4: Instructions completed

v 5: Run cycles

pm_fxu1

v (Fixed Point events)

v 0: FXU idle

v 1: FXU busy

v 2: FXU0 busy FXU1 idle

v 3: FXU1 busy FXU0 idle

v 4: Instructions completed

v 5: Run cycles

pm_lsref_L1

v (Load/Store operations and L1 activity)

180 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

v 0: Data loaded from L2

v 1: Instruction fetched from L1

v 2: L1 D cache store references

v 3: L1 D cache load references

v 4: Instructions completed

v 5: Run cycles

pm_lsref_L2L3

v (Load/Store operations and L2)

v 0: Data loaded from L3

v 1: Data loaded from local memory

v 2: L1 D cache store references

v 3: L1 D cache load references

v 4: Instructions completed

v 5: Run cycles

pm_lsref_tlbmiss

v (Load/Store operations and TLB misses)

v 0: Instruction TLB misses

v 1: Data TLB misses

v 2: L1 D cache store references

v 3: L1 D cache load references

v 4: Instructions completed

v 5: Run cycles

pm_Dmiss

v (Data cache misses)

v 0: Data loaded from L3

v 1: Data loaded from local memory

v 2: L1 D cache load misses

v 3: L1 D cache store misses

v 4: Instructions completed

v 5: Run cycles

pm_prefetchX

v (Prefetch events)

v 0: Processor cycles

v 1: Instruction prefetch requests

v 2: L1 cache data prefetches

v 3: L2 cache prefetches

v 4: Instructions completed

v 5: Run cycles

pm_branchX

v (Branch operations)

v 0: Unconditional branch

v 1: A conditional branch was predicted, target prediction

v 2: A conditional branch was predicted, CR prediction

v 3: Branches issued

Appendix D. Supported IBM System p5 PMAPI hardware counter groupings 181

v 4: Instructions completed

v 5: Run cycles

pm_fpuX1

v (Floating point events by unit)

v 0: FPU0 stalled in pipe3

v 1: FPU1 stalled in pipe3

v 2: FPU0 produced a result

v 3: FPU0 executed FPSCR instruction

v 4: Instructions completed

v 5: Run cycles

pm_fpuX2

v (Floating point events by unit)

v 0: FPU0 executed multiply-add instruction

v 1: FPU1 executed multiply-add instruction

v 2: FPU0 executed FRSP or FCONV instructions

v 3: FPU1 executed FRSP or FCONV instructions

v 4: Instructions completed

v 5: Run cycles

pm_fpuX3

v (Floating point events by unit)

v 0: FPU0 executed add, mult, sub, cmp or sel instruction

v 1: FPU1 executed add, mult, sub, cmp or sel instruction

v 2: FPU0 produced a result

v 3: FPU1 produced a result

v 4: Instructions completed

v 5: Run cycles

IBM System p5 Model 575 (POWER5+) hardware counter groupings

Group name

v Group description

v Event description

v Event description

v ...

v Event description

pm_utilization

v (CPI and utilization data)

v Run cycles

v Run instructions completed

v Instructions dispatched

v Processor cycles

v Run instructions completed

v Run cycles

182 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|

|

|

|

|

|

|

|

Note: Duplicate events appear only once in the Data View of the Profile

Visualization Tool.

pm_lsu1

v (LSU LRQ and LMQ events)

v LRQ slot 0 allocated

v LRQ slot 0 valid

v LMQ slot 0 allocated

v LMQ slot 0 valid

v Run instructions completed

v Run cycles

pm_lsu2

v (LSU SRQ events)

v SRQ slot 0 allocated

v SRQ slot 0 valid

v SRQ sync duration

v Cycles SRQ full

v Run instructions completed

v Run cycles

pm_prefetch1

v (Prefetch stream allocation)

v Instructions fetched missed L2

v Cycles at least 1 instruction fetched

v D cache out of prefetch streams

v D cache new prefetch stream allocated

v Run instructions completed

v Run cycles

pm_misc_load

v (Non-cacheable loads and stcx events)

v Stcx failed

v Stcx passes

v LSU0 non-cacheable loads

v LSU1 non-cacheable loads

v Run instructions completed

v Run cycles

pm_branch_miss

v (Branch mispredict)

v TLB misses

v SLB misses

v Branch mispredictions due to CR bit setting

v Branch mispredictions due to target address

v Run instructions completed

v Run cycles

pm_L1_tlbmiss

v Cycles doing data tablewalks

Appendix D. Supported IBM System p5 PMAPI hardware counter groupings 183

|
|

|

|

|

|

|

|

|

v Data TLB misses

v L1 D cache load misses

v L1 D cache load references

v Run instructions completed

v Run cycles

pm_L1_slbmiss

v (L1 load and SLB misses)

v Data SLB misses

v Instruction SLB misses

v LSU0 L1 D cache load misses

v LSU1 L1 D cache load misses

v Run instructions completed

v Run cycles

pm_dtlbref

v Data TLB reference for 4K page

v Data TLB reference for 64K page

v Data TLB reference for 16M page

v Data TLB reference for 16G page

v Run instructions completed

v Run cycles

pm_dtlbmiss

v Data TLB miss for 4K page

v Data TLB miss for 64K page

v Data TLB miss for 16M page

v Data TLB miss for 16G page

v Run instructions completed

v Run cycles

pm_dtlb

v Data TLB references

v Data TLB misses

v Processor cycles

v Run instructions completed

v Run cycles

Note: Duplicate events appear only once in the Data View of the Profile

Visualization Tool.

pm_L1_dtlbmiss_4K

Note: This counter is not supported on IBM System p5 Model 575 servers.

v (L1 load references and 4K Data TLB references and misses)

v Data TLB reference for 4K page

v Data TLB miss for 4K page

v LSU0 L1 D cache load references

v LSU1 L1 D cache load references

v Run instructions completed

184 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

v Run cycles

pm_L1_dtlbmiss_16M

Note: This counter is not supported on IBM System p5 Model 575 servers.

v (L1 store references and 16M Data TLB references and misses)

v Data TLB reference for 16M page

v Data TLB miss for 16M page

v LSU0 L1 D cache store references

v LSU1 L1 D cache store references

v Run instructions completed

v Run cycles

pm_dsource1

v (L3 cache and memory data access)

v Data loaded from L3

v Data loaded from local memory

v Flushes

v Run instructions completed

v Run instructions completed

v Run cycles

pm_dsource2

v (L3 cache and memory data access)

v Data loaded from L3

v Data loaded from local memory

v Data loaded missed L2

v Data loaded from remote memory

v Run instructions completed

v Run cycles

pm_dsource_L2

v (L2 cache data access)

v Data loaded from L2.5 shared

v Data loaded from L2.5 modified

v Data loaded from L2.75 shared

v Data loaded from L2.75 modified

v Run instructions completed

v Run cycles

pm_dsource_L3

v (L3 cache data access)

v Data loaded from L3.5 shared

v Data loaded from L3.5 modified

v Data loaded from L3.75 shared

v Data loaded from L3.75 modified

v Run instructions completed

v Run cycles

pm_isource1

Appendix D. Supported IBM System p5 PMAPI hardware counter groupings 185

|

|

|

|

|

|

|

v (Instruction source information)

v Instruction fetched from L3

v Instruction fetched from L1

v Instructions fetched from prefetch

v Instruction fetched from remote memory

v Run instructions completed

v Run cycles

pm_isource2

v (Instruction source information)

v Instructions fetched from L2

v Instruction fetched from local memory

v Run instructions completed

v No instructions fetched

v Run instructions completed

v Run cycles

pm_isource_L2

v (L2 instruction source information)

v Instruction fetched from L2.5 shared

v Instruction fetched from L2.5 modified

v Instruction fetched from L2.75 shared

v Instruction fetched from L2.75 modified

v Run instructions completed

v Run cycles

pm_isource_L3

v (L3 instruction source information)

v Instruction fetched from L3.5 shared

v Instruction fetched from L3.5 modified

v Instruction fetched from L3.75 shared

v Instruction fetched from L3.75 modified

v Run instructions completed

v Run cycles

pm_fpu1

v (Floating Point events)

v FPU executed FDIV instruction

v FPU executed multiply-add instruction

v FPU executing FMOV or FEST instructions

v FPU executed FEST instruction

v Run instructions completed

v Run cycles

pm_fpu2

v (Floating Point events)

v FPU executed one flop instruction

v FPU executed FSQRT instruction

v FPU executed FRSP or FCONV instructions

186 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|

|

|

|

|

|

v FPU produced a result

v Run instructions completed

v Run cycles

pm_fpu3

v (Floating point events)

v FPU received denormalized data

v FPU stalled in pipe3

v FPU0 produced a result

v FPU1 produced a result

v Run instructions completed

v Run cycles

pm_fpu4

v (Floating point events)

v FPU executed single precision instruction

v FPU executed store instruction

v Run instructions completed

v LSU executed Floating Point load instruction

v Run instructions completed

v Run cycles

pm_fpu5

v (Floating point events by unit)

v FPU0 executed FSQRT instruction

v FPU1 executed FSQRT instruction

v FPU0 executed FEST instruction

v FPU1 executed FEST instruction

v Run instructions completed

v Run cycles

pm_fpu6

v (Floating point events by unit)

v FPU0 received denormalized data

v FPU1 received denormalized data

v FPU0 executed FMOV or FEST instructions

v FPU1 executing FMOV or FEST instructions

v Run instructions completed

v Run cycles

pm_fpu7

v (Floating point events by unit)

v FPU0 executed FDIV instruction

v FPU1 executed FDIV instruction

v FPU0 executed FRSP or FCONV instructions

v FPU1 executed FRSP or FCONV instructions

v Run instructions completed

v Run cycles

pm_fpu8

Appendix D. Supported IBM System p5 PMAPI hardware counter groupings 187

|

|

|

|

|

|

|

v (Floating point events by unit)

v FPU0 stalled in pipe3

v FPU1 stalled in pipe3

v Run instructions completed

v FPU0 executed FPSCR instruction

v Run instructions completed

v Run cycles

pm_fpu9

v (Floating point events by unit)

v FPU0 executed single precision instruction

v FPU1 executed single precision instruction

v LSU0 executed Floating Point load instruction

v LSU1 executed Floating Point load instruction

v Run instructions completed

v Run cycles

pm_fpu10

v (Floating point events by unit)

v FPU0 executed multiply-add instruction

v FPU1 executed multiply-add instruction

v Run instructions completed

v FPU1 executed FRSP or FCONV instructions

v Run instructions completed

v Run cycles

pm_fpu11

v (Floating point events by unit)

v FPU0 executed add, mult, sub, cmp or sel instruction

v FPU1 executed add, mult, sub, cmp or sel instruction

v FPU0 produced a result

v Run instructions completed

v Run instructions completed

v Run cycles

pm_fpu12

v (Floating point events by unit)

v FPU0 executed store instruction

v FPU1 executed store instruction

v LSU0 executed Floating Point load instruction

v Run instructions completed

v Run instructions completed

v Run cycles

pm_fxu1

v (Fixed Point events)

v FXU idle

v FXU busy

v FXU0 busy FXU1 idle

188 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|

|

|

|

|

|

|

|

|

v FXU1 busy FXU0 idle

v Run instructions completed

v Run cycles

pm_mark_dtlbref

v Marked Data TLB reference for 4K page

v Marked Data TLB reference for 64K page

v Marked Data TLB reference for 16M page

v Marked Data TLB reference for 16G page

v Run instructions completed

v Run cycles

pm_mark_dtlbmiss

v Marked Data TLB misses for 4K page

v Marked Data TLB misses for 64K page

v Marked Data TLB misses for 16M page

v Marked Data TLB misses for 16G page

v Run instructions completed

v Run cycles

pm_mark_dtlbmiss

v Marked Data TLB reference for 4K page

v IOPS instructions completed

v Mared Data TLB reference for 16M page

v Marked Data SLB misses

v Run instructions completed

v Run cycles

pm_lsref_L1

v (Load/Store operations and L1 activity)

v Data loaded from L2

v Instruction fetched from L1

v L1 D cache store references

v L1 D cache load references

v Run instructions completed

v Run cycles

pm_lsref_L2L3

v (Load/Store operations and L2)

v Data loaded from L3

v Data loaded from local memory

v L1 D cache store references

v L1 D cache load references

v Run instructions completed

v Run cycles

pm_lsref_tlbmiss

v (Load/Store operations and TLB misses)

v Instruction TLB misses

v Data TLB misses

Appendix D. Supported IBM System p5 PMAPI hardware counter groupings 189

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v L1 D cache store references

v L1 D cache load references

v Run instructions completed

v Run cycles

pm_Dmiss

v (Data cache misses)

v Data loaded from L3

v Data loaded from local memory

v L1 D cache load misses

v L1 D cache store misses

v Run instructions completed

v Run cycles

pm_prefetchX

v (Prefetch events)

v Processor cycles

v Instruction prefetch requests

v L1 cache data prefetches

v L2 cache prefetches

v Run instructions completed

v Run cycles

pm_branchX

v (Branch operations)

v Unconditional branch

v A conditional branch was predicted, target prediction

v A conditional branch was predicted, CR prediction

v Branches issued

v Run instructions completed

v Run cycles

pm_fpuX1

v (Floating point events by unit)

v FPU0 stalled in pipe3

v FPU1 stalled in pipe3

v FPU0 produced a result

v FPU0 executed FPSCR instruction

v Run instructions completed

v Run cycles

pm_fpuX2

v (Floating point events by unit)

v FPU0 executed multiply-add instruction

v FPU1 executed multiply-add instruction

v FPU0 executed FRSP or FCONV instructions

v FPU1 executed FRSP or FCONV instructions

v Run instructions completed

v Run cycles

190 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

|

|

|

|

|

|

pm_fpuX3

v (Floating point events by unit)

v FPU0 executed add, mult, sub, cmp or sel instruction

v FPU1 executed add, mult, sub, cmp or sel instruction

v FPU0 produced a result

v FPU1 produced a result

v Run instructions completed

v Run cycles

Appendix D. Supported IBM System p5 PMAPI hardware counter groupings 191

|

192 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

Appendix E. Accessibility features for PE

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in IBM Parallel

Environment. These features support:

v Keyboard-only operation.

v Interfaces that are commonly used by screen readers.

v Keys that are tactilely discernible and do not activate just by touching them.

v Industry-standard devices for ports and connectors.

v The attachment of alternative input and output devices.

Note: The IBM eServer Cluster Information Center and its related publications are

accessibility-enabled for the IBM Home Page Reader. You can operate all

features using the keyboard instead of the mouse.

Keyboard navigation

This product uses standard Microsoft® Windows® navigation keys.

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information

about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 1993, 2006 193

194 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country

where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1993, 2006 195

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

Department LJEB/P905

2455 South Road

Poughkeepsie, NY 12601-5400

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available

for it are provided by IBM under terms of the IBM Customer Agreement, IBM

International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM

has not tested those products and cannot confirm the accuracy of performance,

compatibility or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those

products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM,

for the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

196 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

All implemented function in the PE MPI product is designed to comply with the

requirements of the Message Passing Interface Forum, MPI: A Message-Passing

Interface Standard. The standard is documented in two volumes, Version 1.1,

University of Tennessee, Knoxville, Tennessee, June 6, 1995 and MPI-2: Extensions

to the Message-Passing Interface, University of Tennessee, Knoxville, Tennessee,

July 18, 1997. The second volume includes a section identified as MPI 1.2 with

clarifications and limited enhancements to MPI 1.1. It also contains the extensions

identified as MPI 2.0. The three sections, MPI 1.1, MPI 1.2 and MPI 2.0 taken

together constitute the current standard for MPI.

PE MPI provides support for all of MPI 1.1 and MPI 1.2. PE MPI also provides

support for all of the MPI 2.0 Enhancements, except the contents of the chapter

titled Process Creation and Management.

If you believe that PE MPI does not comply with the MPI standard for the portions

that are implemented, please contact IBM Service.

Trademarks

The following are trademarks of International Business Machines Corporation in the

United States, other countries, or both:

 1-2-3

 AFS®

 AIX

 AIX 5L

 DFS

 eServer

 IBM

 IBMLink™

 LoadLeveler

 Lotus

 POWER™

 POWER3™

 POWER4

 POWER5+

 pSeries

 System p5

UNIX® is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 197

Acknowledgments

The PE Benchmarker product includes software developed by the Apache Software

Foundation, http://www.apache.org.

198 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

Index

A
abbreviated names x

accessibility 193

keyboard 193

shortcut keys 193

acknowledgments 198

acronyms for product names x

adapter 169

address 8

alias subcommand (of the pdbx command) 129

application 1

argument 19

assign subcommand (of the pdbx command) 130

attach subcommand (of the pdbx command) 130

attribute subcommand (of the pdbx command) 130

audience of this book ix

B
back subcommand (of the pdbx command) 131

Benchmarker toolset 35

illustration of 37

overview of 35

block add subcommand (of the pct command) 86

blocking read 17

blocking receive 24

blocking send 24

C
call subcommand (of the pdbx command) 131

case subcommand (of the pdbx command) 132

catch subcommand (of the pdbx command) 132

command alias 2

commands, PE 83

commcount add subcommand (of the pct

command) 63, 87

commcount remove subcommand (of the pct

command) 66, 89

commcount set mode subcommand (of the pct

command) 89

commcount set path subcommand (of the pct

command) 63, 90

commcount show subcommand (of the pct

command) 90

condition subcommand (of the pdbx command) 133

connect subcommand (of the pct command) 49, 91

cont subcommand (of the pdbx command) 133

conventions x

current context 2

D
dbx subcommand (of the pdbx command) 133

dbx subcommands 28, 135

debugging parallel programs 1

with pdbx 1

delete subcommand (of the pdbx command) 134

destroy subcommand (of the pct command) 69, 92

detach subcommand (of the pdbx command) 135

dhelp subcommand (of the pdbx command) 135

disability 193

disconnect subcommand (of the pct command) 70, 93

display memory subcommand (of the pdbx

command) 135

down subcommand (of the pdbx command) 136

dump subcommand (of the pdbx command) 136

E
event 2

executable 5

execution 1

exit subcommand (of the pct command) 71, 93

exit subcommand (of the pvt command) 82, 159

export subcommand (of the pvt command) 81, 159

expression 2

F
file subcommand (of the pct command) 94

file subcommand (of the pdbx command) 136

find subcommand (of the pct command) 95

flag 1

Fortran 5

func subcommand (of the pdbx command) 137

function
context sensitive subcommands 2

function subcommand (of the pct command) 95

G
global variable 22

goto subcommand (of the pdbx command) 137

gotoi subcommand (of the pdbx command) 137

group subcommand (of the pct command) 46, 97

group subcommand (of the pdbx command) 137

H
halt subcommand (of the pdbx command) 139

help
accessing PCT’s command-line help 46

accessing PCT’s GUI help 42

accessing PVT’s GUI help 79

help subcommand (of the pct command) 98

help subcommand (of the pdbx command) 139

help subcommand (of the pvt command) 159

home node 1

hook subcommand (of the pdbx command) 140

host list file 5

© Copyright IBM Corp. 1993, 2006 199

I
IBM Parallel Environment for AIX ix

ignore subcommand (of the pdbx command) 140

L
list subcommand (of the pct command) 51, 98

list subcommand (of the pdbx command) 141

listi subcommand (of the pdbx command) 142

load subcommand (of the pct command) 48, 99

load subcommand (of the pdbx command) 142

load subcommand (of the pvt command) 80, 159

local variable 22

LookAt message retrieval tool xii

M
map subcommand (of the pdbx command) 143

message retrieval tool, LookAt xii

MPMD (Multiple Program Multiple Data) 4

mutex subcommand (of the pdbx command) 143

N
next subcommand (of the pdbx command) 143

nexti subcommand (of the pdbx command) 144

node 1

O
on subcommand (of the pdbx command) 144

online help
accessing PCT’s command-line help 46

accessing PCT’s GUI help 42

accessing PVT’s GUI help 79

openmp add subcommand (of the pct command) 66,

101

openmp callsite subcommand (of the pct

command) 102

openmp help subcommand (of the pct command) 104

openmp remove probe subcommand (of the pct

command) 104

openmp remove subcommand (of the pct

command) 69

openmp set path subcommand (of the pct

command) 66, 105

openmp show subcommand (of the pct command) 105

optimization 1

option 1

P
Parallel Operating Environment (POE) ix

parallel profiling capability 171

parallel programs 1

debugging 1

parameter 25

partition 1

Partition Manager 9

PCT See also ″Performance Collection Tool (PCT)″
See Performance Collection Tool (PCT)

pct command 41, 45, 84

PCT script files, creating and running 71

PCT subcommands 86

(comment) 91

block add 86

commcount add 63, 87

commcount remove 66, 89

commcount set mode 89

commcount set path 63, 90

commcount show 90

connect 49, 91

destroy 69, 92

disconnect 70, 93

exit 71, 93

file 94

find 95

function 95

group 46, 97

help 98, 159

list 51, 98

load 48, 99

openmp add 66, 101

openmp callsite 102

openmp help 104

openmp remove 69

openmp remove probe 104

openmp set path 66, 105

openmp show 105

point 106

profile add 61, 107

profile help 109

profile remove 63, 110

profile set 110

profile set path 60

profile show 111

resume 50, 111

run 71, 112

select 52, 112

set 113

show 114

start 48, 115

stdin 50, 116

suspend 49, 116

trace add 55, 57, 117

trace help 119

trace remove 57, 59, 120

trace set 54, 120

trace show 121

wait 122

pdbx Attach screen 8

pdbx command 123

pdbx debugger 1

accessing help for dbx subcommands 28

accessing help for pdbx subcommands 28

attach mode 7

checking event status 23

command context 1

controlling program execution 18

creating, removing, and listing aliases 28

200 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

pdbx debugger (continued)
deleting breakpoints 22

deleting events 22

deleting tracepoints 22

displaying source 27

displaying task states 10

displaying tasks 10

exiting pdbx 33

grouping tasks 14

hooking tasks 24

interrupting tasks 20

loading the partition 9

normal mode 4

overloaded symbols 31

reading subcommands from a command file 30

setting breakpoints 19

setting command context 14

setting tracepoints 20

specifying expressions 30

specifying variables on trace and stop

subcommands 22

starting pdbx 4

unhooking tasks 24

using pdbx 1

viewing program call stacks 25

viewing program variables 25

pdbx subcommands 1, 2, 15, 129

active 10

alias 28, 129

assign 130

attach 130

attribute 130

back 131

call 131

case 132

catch 132

condition 133

cont 133

context insensitive subcommands 2

dbx 133

delete 22, 134

detach 32, 135

dhelp 28, 135

display memory 135

down 136

dump 136

file 136

func 137

goto 137

gotoi 137

group 11, 137

halt 139

help 28, 139

hook 24, 140

ignore 140

list 27, 141

listi 142

load 9, 142

map 143

mutex 143

next 143

pdbx subcommands (continued)
nexti 144

on 14, 144

overview 1

print 25, 146

quick reference listing 2

quit 32, 146

registers 146

return 147

search 147

set 147

sh 148

skip 148

source 148

status 23, 148

step 149

stepi 150

stop 19, 150

tasks 151

thread 152

trace 20, 153

unalias 28, 154

unhook 24, 155

unset 155

up 156

use 156

whatis 156

where 25, 156

whereis 157

which 157

PE Benchmarker toolset 35

illustration of 37

overview of 35

PE commands 83

pct command 41, 45, 84

pdbx 123

pvt 158

pvt command 78, 80

slogmerge 161

traceTOslog2 75

uteconvert 73, 163

utemerge 165

utestats 73, 167

Performance Collection Tool (PCT) 38

application, connecting to an 49

application, disconnecting 70

application, loading 48

application, starting 48

application, terminating 69

command-line interface of 42

commcount probes, removing 66

commcount probes, setting output location for 63

execution, resuming application 50

execution, suspending application 49

exiting 71

graphical user interface of 38

grouping tasks 46

help, accessing 42, 46

MPI trace probes, adding 55

MPI trace probes, removing 57

openmp probes, adding 66

Index 201

Performance Collection Tool (PCT) (continued)
openmp probes, removing 69

openmp probes, setting output location for 66

preferences, setting 54

probe type, selecting 52

profile probes, adding 61, 63

profile probes, removing 63

profile probes, setting output location for 60

script files, creating and running 71

source code, displaying application 51

standard input, sending to application 50

starting (in command-line mode) 45

starting (in graphical user interface mode) 41

user markers, adding 57

user markers, removing 59

POE command line flags
-procs 5

POE command-line flags 169

POE environment variables
MP_DBXPROMPTMOD 127

MP_DEBUG_INITIAL_STOP 20, 127

MP_EUILIBPATH 172

MP_PROCS 5

point subcommand (of the pct command) 106

pool 169

preface ix

prerequisite knowledge for this book ix

print subcommand (of the pdbx command) 146

procedure 2

profile add subcommand (of the pct command) 61,

107

profile help subcommand (of the pct command) 109

profile remove subcommand (of the pct command) 63,

110

profile set path subcommand (of the pct command) 60

profile set subcommand (of the pct command) 110

profile show subcommand (of the pct command) 111

Profile Visualization Tool (PVT) 76

command-line interface of 80

graphical user interface of 76

help, accessing 79

starting (in command-line mode) 80

starting (in graphical user interface mode) 78

PVT See also ″Profile Visualization Tool (PVT)″ 76

pvt command 78, 80, 158

PVT subcommands 159

exit 82, 159

export 81, 159

load 80, 159

report 81, 160

sum 81, 160

Q
quit subcommand (of the pdbx command) 146

R
registers subcommand (of the pdbx command) 146

remote node 2

report subcommand (of the pvt command) 81, 160

Resource Manager 9

resume subcommand (of the pct command) 50, 111

return subcommand (of the pdbx command) 147

run subcommand (of the pct command) 71, 112

S
search subcommand (of the pdbx command) 147

select subcommand (of the pct command) 52, 112

serial program 172

server 2

set subcommand (of the pct command) 113

set subcommand (of the pdbx command) 147

sh subcommand (of the pdbx command) 148

shortcut keys
keyboard 193

show subcommand (of the pct command) 114

skip subcommand (of the pdbx command) 148

slogmerge command 161

source code 5

source line 19

source subcommand (of the pdbx command) 148

SPMD (Single Program Multiple Data) 4

standard input (STDIN) 16

standard output (STDOUT) 5

start subcommand (of the pct command) 48, 115

status subcommand (of the pdbx command) 148

stdin subcommand (of the pct command) 50, 116

step subcommand (of the pdbx command) 149

stepi subcommand (of the pdbx command) 150

stop subcommand (of the pdbx command) 150

subcommands 28, 129

dbx 28, 135

pdbx 28, 129

sum subcommand (of the pvt command) 81, 160

suspend subcommand (of the pct command) 49, 116

T
task 1

tasks subcommand (of the pdbx command) 151

thread subcommand (of the pdbx command) 152

trace add subcommand (of the pct command) 55, 57,

117

trace help subcommand (of the pct command) 119

trace remove subcommand (of the pct command) 57,

59, 120

trace set subcommand (of the pct command) 54, 120

trace show subcommand (of the pct command) 121

trace subcommand (of the pdbx command) 153

traceTOslog2 command 75

trademarks 197

U
unalias subcommand (of the pdbx command) 154

unhook subcommand (of the pdbx command) 155

unset subcommand (of the pdbx command) 155

up subcommand (of the pdbx command) 156

use subcommand (of the pdbx command) 156

user 2

202 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

UTE interval files
converting AIX trace files into 73

converting info SLOG2 files 75

generating statistics tables from 73

UTE utilities 72

uteconvert command 73, 163

utemerge command 165

utestats command 73, 167

V
variable 12

VSD
See IBM Virtual Shared Disk

W
wait subcommand (of the pct command) 122

whatis subcommand (of the pdbx command) 156

where subcommand (of the pdbx command) 156

whereis subcommand (of the pdbx command) 157

which subcommand (of the pdbx command) 157

Index 203

204 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 2

Readers’ comments – We’d like to hear from you

IBM Parallel Environment for AIX 5L

Operation and Use, Volume 2

Tools Reference

Version 4 Release 3.0

 Publication No. SA22-7949-05

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send your comments via e-mail to: mhvrcfs@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SA22-7949-05

SA22-7949-05

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie NY

 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5765-F83

SA22-7949-05

	Contents
	Tables
	About this book
	Who should read this book
	How this book is organized
	Conventions and terminology used in this book
	Abbreviated names

	Prerequisite and related information
	Using LookAt to look up message explanations

	How to send your comments
	National language support (NLS)
	Summary of changes for Parallel Environment 4.3

	Chapter 1. Using the pdbx debugger
	pdbx subcommands
	Starting the pdbx debugger
	Starting pdbx in normal mode
	Starting pdbx in attach mode
	Attach screen
	Selecting tasks
	Other compiling options
	Command line arguments

	Loading the partition with the load subcommand
	Displaying tasks and their states
	Grouping tasks
	Adding a task to a task group
	Deleting tasks from a task group
	Changing the name of a task group
	Listing task groups
	Setting command context
	Context switch when blocked

	Controlling program execution
	Setting breakpoints
	Interrupting tasks
	Setting tracepoints
	Specifying variables on the trace and stop subcommands
	Deleting pdbx events
	Checking event status
	Unhooking and hooking tasks

	Examining program data
	Viewing program call stacks
	Viewing program variables
	Displaying source

	Other key features
	Accessing help for pdbx subcommands
	Accessing help for dbx subcommands
	Creating, removing, and listing command aliases
	Reading subcommands from a command file
	Specifying expressions

	Overloaded symbols
	Exiting pdbx

	Chapter 2. Analyzing program performance using the PE Benchmarker toolset
	What is the PE Benchmarker?
	Using the Performance Collection Tool
	Using the Performance Collection Tool's graphical user interface
	Using the Performance Collection Tools graphical user interface - overview
	Starting the Performance Collection Tool
	Accessing the Performance Collection Tool's online help system

	Using the Performance Collection Tool's command-line interface
	Using the Performance Collection Tools command-line interface - overview
	Starting the Performance Collection Tool in command-line mode
	Getting help on the PCT's command-line interface
	Grouping tasks of a POE application
	Loading and starting a new application
	Connecting to a running application
	Suspending and resuming application execution
	Sending standard input text to the application
	Displaying the contents of a source file
	Selecting the type of probe data to be collected
	Collecting MPI trace and custom user marker information
	Collecting hardware and operating system profile information
	Using the communication profiling tool
	Using the OpenMP profiling tool
	Terminating connected processes
	Disconnecting from the application
	Exiting the Performance Collection Tool
	Creating and Running PCT script files

	Creating, converting, and viewing information contained in UTE interval files
	Converting AIX trace files into UTE interval trace files
	Generating statistics tables from UTE interval trace files
	Converting UTE interval files into SLOG2 files required by Argonne National Laboratory's Jumpshot Tool

	Using the Profile Visualization Tool
	Using the Profile Visualization Tool's graphical user interface
	Using the Profile Visualization Tools graphical user interface - overview
	Starting the Profile Visualization Tool
	Accessing the Profile Visualization Tool's online help system

	Using the Profile Visualization Tool's command line interface
	Using the Profile Visualization Tools command line interface - overview
	Starting the Profile Visualization Tool in command-line mode
	Loading files
	Creating a summary file
	Generating reports
	Exporting files
	Exiting the Profile Visualization Tool

	Appendix A. Parallel environment tools commands
	pct
	Subcommands of the pct command
	block subcommand (of the pct command)
	commcount add subcommand (of the pct command)
	commcount remove subcommand (of the pct command)
	commcount set mode subcommand (of the pct command)
	commcount set path subcommand (of the pct command)
	commcount show subcommand (of the pct command)
	comment subcommand (of the pct command)
	connect subcommand (of the pct command)
	destroy subcommand (of the pct command)
	disconnect subcommand (of the pct command)
	exit subcommand (of the pct command)
	file subcommand (of the pct command)
	find subcommand (of the pct command)
	function subcommand (of the pct command)
	group subcommand (of the pct command)
	help subcommand (of the pct command)
	list subcommand (of the pct command)
	load subcommand (of the pct command)
	openmp add subcommand (of the pct command)
	openmp callsite subcommand (of the pct command)
	openmp help subcommand (of the pct command)
	openmp remove probe subcommand (of the pct command)
	openmp set path subcommand (of the pct command)
	openmp show subcommand (of the pct command)
	point subcommand (of the pct command)
	profile add subcommand (of the pct command)
	profile help subcommand (of the pct command)
	profile remove subcommand (of the pct command)
	profile set subcommand (of the pct command)
	profile show subcommand (of the pct command)
	resume subcommand (of the pct command)
	run subcommand (of the pct command)
	select subcommand (of the pct command)
	set subcommand (of the pct command)
	show subcommand (of the pct command)
	start subcommand (of the pct command)
	stdin subcommand (of the pct command)
	suspend subcommand (of the pct command)
	trace add subcommand (of the pct command)
	trace help subcommand (of the pct command)
	trace remove subcommand (of the pct command)
	trace set subcommand (of the pct command)
	trace show subcommand (of the pct command)
	wait subcommand (of the pct command)

	pdbx
	Subcommands of the pdbx command
	alias subcommand (of the pdbx command)
	assign subcommand (of the pdbx command)
	attach subcommand (of the pdbx command)
	attribute subcommand (of the pdbx command)
	back subcommand (of the pdbx command)
	call subcommand (of the pdbx command)
	case subcommand (of the pdbx command)
	catch subcommand (of the pdbx command)
	condition subcommand (of the pdbx command)
	cont subcommand (of the pdbx command)
	dbx subcommand (of the pdbx command)
	delete subcommand (of the pdbx command)
	detach subcommand (of the pdbx command)
	dhelp subcommand (of the pdbx command)
	display memory subcommand (of the pdbx command)
	down subcommand (of the pdbx command)
	dump subcommand (of the pdbx command)
	file subcommand (of the pdbx command)
	func subcommand (of the pdbx command)
	goto subcommand (of the pdbx command)
	gotoi subcommand (of the pdbx command)
	group subcommand (of the pdbx command)
	halt subcommand (of the pdbx command)
	help subcommand (of the pdbx command)
	hook subcommand (of the pdbx command)
	ignore subcommand (of the pdbx command)
	list subcommand (of the pdbx command)
	listi subcommand (of the pdbx command)
	load subcommand (of the pdbx command)
	map subcommand (of the pdbx command)
	mutex subcommand (of the pdbx command)
	next subcommand (of the pdbx command)
	nexti subcommand (of the pdbx command)
	on subcommand (of the pdbx command)
	print subcommand (of the pdbx command)
	quit subcommand (of the pdbx command)
	registers subcommand (of the pdbx command)
	return subcommand (of the pdbx command)
	search subcommand (of the pdbx command)
	set subcommand (of the pdbx command)
	sh subcommand (of the pdbx command)
	skip subcommand (of the pdbx command)
	source subcommand (of the pdbx command)
	status subcommand (of the pdbx command)
	step subcommand (of the pdbx command)
	stepi subcommand (of the pdbx command)
	stop subcommand (of the pdbx command)
	tasks subcommand (of the pdbx command)
	thread subcommand (of the pdbx command)
	trace subcommand (of the pdbx command)
	unalias subcommand (of the pdbx command)
	unhook subcommand (of the pdbx command)
	unset subcommand (of the pdbx command)
	up subcommand (of the pdbx command)
	use subcommand (of the pdbx command)
	whatis subcommand (of the pdbx command)
	where subcommand (of the pdbx command)
	whereis subcommand (of the pdbx command)
	which subcommand (of the pdbx command)

	pvt
	Subcommands of the pvt command
	exit subcommand (of the pvt command)
	export subcommand (of the pvt command)
	help subcommand (of the pvt command)
	load subcommand (of the pvt command)
	report subcommand (of the pvt command)
	sum subcommand (of the pvt command)

	slogmerge
	uteconvert
	utemerge
	utestats

	Appendix B. Command line flags for normal or attach mode
	Appendix C. Profiling programs with the AIX prof and gprof commands
	Appendix D. Supported IBM System p5 PMAPI hardware counter groupings
	IBM System p5 hardware counter groupings
	IBM System p5 Model 575 (POWER5+) hardware counter groupings

	Appendix E. Accessibility features for PE
	Accessibility features
	Keyboard navigation
	IBM and accessibility

	Notices
	Trademarks
	Acknowledgments

	Index
	Readers' comments – We'd like to hear from you

